Literature Reading
Time Series
Self-supervised
Unsupervised
deep learning
Signal Process
=============================================
2022。AAAI。TS2Vec: Towards Universal Representation of Time Series
comment
input projection layer
timestamp masking module :
dilated CNN擴張卷積(1-D)
過去應用於TS資料型態比對正樣本的策略
問題
- 當資料有shift或發生異常時,可能取到錯誤的正樣本
以跨階層比較取得不同層級的語意一致性:
TS2VEC的損失函數則可以下列簡化的正、負樣本對loss計算組成
\[ Loss = L_{temp} + L_{inst} \]
or
or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up
Syntax | Example | Reference | |
---|---|---|---|
# Header | Header | 基本排版 | |
- Unordered List |
|
||
1. Ordered List |
|
||
- [ ] Todo List |
|
||
> Blockquote | Blockquote |
||
**Bold font** | Bold font | ||
*Italics font* | Italics font | ||
~~Strikethrough~~ | |||
19^th^ | 19th | ||
H~2~O | H2O | ||
++Inserted text++ | Inserted text | ||
==Marked text== | Marked text | ||
[link text](https:// "title") | Link | ||
 | Image | ||
`Code` | Code |
在筆記中貼入程式碼 | |
```javascript var i = 0; ``` |
|
||
:smile: | ![]() |
Emoji list | |
{%youtube youtube_id %} | Externals | ||
$L^aT_eX$ | LaTeX | ||
:::info This is a alert area. ::: |
This is a alert area. |
On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?
Please give us some advice and help us improve HackMD.
Do you want to remove this version name and description?
Syncing