[Time Series] Deep Learning with Time Series data
彙整2022年底深度學習方法在處理時間序列資料上的資源、趨勢與SOTA模型
What is Time Series Data
Property
Signal Process
Garbage in, Garbage out, 了解傳統訊號處理、解讀、清理方式仍有必要
-
特徵提取方式及演變
-
統計(Statistical Domain)
- Maximum, Minimum, Mean, Median, Skewness, Kurtosis, Histogram, Interquartile Range, Mean Absolute Deviation, Median Absolute Deviation, Root Mean Square, Standard Deviation, Variance, Empirical Distribution. (Absolute Deviation), Median Absolute Deviation, Root Mean Square, Standard Deviation, Variance, Empirical Distribution Function Percentile Count, Slope of Empirical Distribution Function (ECDF), etc. Slope), etc..
-
時域(Time/Temporal Domain)特徵
- Autocorrelation, Centroid, Mean Differences, Mean Absolute Differences, Median Differences, Median Absolute Differences), Sum of Absolute Differences, Entropy, Peak to Peak Distance, Area Under the Curve, The Number of Maximum Peaks, The Number of Minimum Peaks, Zero Crossing Rate), etc.
-
頻域(Frequency/Spectral Domain)特徵
- Fourier Transform, FFT Mean Coefficient, Wavelet Transform, Wavelet Absolute Mean, Wavelet Standard Deviation, Wavelet Variance, Spectral Distance, Spectral Fundamental Frequency, Spectral Median Frequency, and Spectral Frequency. (Variance), Spectral Distance, Spectral Fundamental Frequency, Spectral Maximum Frequency, Spectral Median Frequency, Spectral Maximum Peaks, etc.
-
時域-頻域的聯合特徵

- Analyze signals and images in the wavelet domain

- Psychoacoustic Impacts Estimation in Manufacturing based on Accelerometer Measurement using Artificial Neural Networks
-
深度(學習)特徵
-
特徵工程方法演變

-
參考資料
-
course
Resources
Open Librarys
tsai
目前支援最完整的時間序列深度學習模型資源、包含資料的前處理與視覺化
-
官方文件
-
Data preparation:
-
Visualization
-
SOTA
- However, the ones that have consistently deliver the best results in recent benchmark studies are Inceptiontime (Fawaz, 2019) and ROCKET (Dempster, 2019). Transformers, like TST (Zerveas, 2020), also show a lot of promise, but the application to time series data is so new that they have not been benchmarked against other architectures.
-
Format aligment in TSAI
- array:(sample, n_var, t_step)
- df format:
- cols = [sample, feature, t_step]
df2xy()
tslearn
支援一些ml的方法,近年缺乏維護
Open Datasets
Paper and Code survey
期刊與研討會等級
- 資源整理:跟上AI前沿知識
- arXiv
- 通常在arXiv上幾乎可以搜到所有AI領域重要的論文,而且還可以拿到第一手的論文,但是arXiv並沒有嚴格的審核機制,所以在尚未經過其他研討會和期刊審核過之前務必要對內容執懷疑的態度。
- h-index
- 代表所有發表論文中至少有h篇分別被引用了至少h次;
- h-median
- 代表被引用最多的h篇(由h-index決定)論文當中引用次數的中位數。舉例:一個研討會有五篇文章,其被引用次數如下:17, 9, 6, 3, 2,其h-index為3,所以其具影響力的h篇文章被引用數如下:17, 9, 6,因此中位數9就是h-median。
- 查找相關paper及github好用
- 有些paper在arxiv未必會放上官方code
Deep learning with time series data
Trends
Trends in the kaggle contest
Paradigm Shift
- Supervised -> Self-Supervised
接續自監督方法在NLP與與CV領域的成功,2020年前後時間序列(TS)資料也開始採用自監督學習方法
Architecture
- Sequence(RNN、LSTM)、CNN -> Transformer
Self-Supervised Learning
SOTA(2022/2023)
- 分類任務Ti-MAE與TS2Vec表現接近
- Ti-MAE(生成式訓練)至20200年底尚未公開code,因此目前採用TS2Vec(對比式訓練)進行特徵抽取
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
Contrast method
詳見TS2Vec論文筆記

-
comment
- 輕量、運算時間相當快、可輕易取得學習的特徵
- 支援多變量時間序列
- 同時透過不同層級多尺度的特徵比對提供不同層次的語意,提高特徵學習與通用化的能力
- 時序(temporal)、不同實例(instance)
- 但缺乏頻率方面的特徵提取?
- performance
-
github
[2022。ICLR。Unsupervised Time-Series Representation Learning with Iterative Bilinear Temporal-Spectral Fusion(BTSF)]

- comment
- 透過雙向融合,同時結合時間與頻率特徵(雙線性時空融合),更好同時的捕捉頻率與時間上的全域特徵
- 過去研究不足處
- 多僅捕捉時域或頻域、正負樣本多沿時間軸取樣、長期預測表現不佳
- perpormance
- 想法不錯、但實際表現似乎沒跟近年SOTA拉開差距
- 沒有code可參考,也未跟21年的SOTA比較(來不及放上?)



- comment
- TNC 利用訊號生成過程局部平滑性來學習時間序列窗口的泛化。通過在表徵空間(latent vectors)訊號遠、近端的分布是可區分的
Generative method

- comment
- mask 採用時間同步方式
- performance

- comment
- 應用在時間序列資料合成領域、沒有中間的抽象特徵(latent vectors)
- github

- comment
- 可處裡多變量資料
- 用在預測任務,但修改mask方式有機會適用在各種任務
- 沒有code

- Comment
- 概念相當於時間序列版的BERT,透過生成式方法(遮蔽時間序列資料)進行訓練
- Paper Link & Resource
Supervised Learning(待補)
Forecast task
Regression task
Classification task
Unsupervised Learning
目前趨勢是朝向結合時間與頻率域的跨模態(Cross domain)、自監督、Transformer架構為主
ML Together: Unsupervised time series clustering (part 1)



- Comment
- 完全用時間領域的特徵
- 特徵抽取採用autoencoder概念
EXAI for Time Series
Deep Learning相關筆記
Self-supervised Learning
Object Detection
Autoencoder相關