Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 排列矩陣 Permutation matrix ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$ ```python from gnm import random_permutation ``` ## Main idea Let $[n] = \{1,\ldots,n\}$. A **permutation** is a bijection from $[n]$ to itself. The identity map $\idmap_n: [n]\rightarrow [n]$ with $\idmap_n(x) = x$ is called the **identity permutation** . Let $\mathfrak{S}_n$ be the set of all permutations on $[n]$. There are several ways to represents a permutation $\sigma: [n]\rightarrow [n]$. **Two-line representation**: $$ \begin{array}{cccc} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{array} $$ This notation is a bit lengthy but it is easy to see the inverse. **One-line representation**: $$ \sigma(1)\sigma(2)\cdots\sigma(n) $$ This one is short but hard to see the connection between $i$ and $\sigma(i)$. **Cycle representation**: $$ \big(i_1\sigma(i_1)\sigma^2(i_1)\cdots\big)\big(i_2\sigma(i_2)\sigma^2(i_2)\cdots\big) \cdots $$ It shows the cycle behavior of a permutation but is less easy to calculate the composition of two permutations. **Graph representation**: $$ \begin{aligned} V &= [n] \\ E &= \{(i,\sigma(i)): i\in [n]\} \\ G_\sigma &= (V,E) \end{aligned} $$ This is a **digraph** on $n$ **vertices** and $n$ **directed edges**. Note that the digraph $G$ is composed of several cycles. The **sign** of a permutation $\sigma$ is $$ \sgn(\sigma) = (-1)^k = (-1)^{n + c(\sigma)}. $$ where $k$ is the number of swaps of two values on the one-line representation so that it can becomes $12\ldots n$, while $c(\sigma)$ is the number of cycles in $G_\sigma$. Let $\sigma$ be a permutation on $[n]$. The **permutation matrix** $P_\sigma$ of $\sigma$ is the $0,1$-matrix whose $i,\sigma(i)$-entries are $1$ for $i = 1,\ldots,n$. Therefore, a permutation matrix is a matrix such that there is a unique $1$ one each row and each column. It turns out that $$ \det(P_\sigma) = \sgn(\sigma). $$ ## Side stories - well-defined - Stirling numbers ## Experiments ##### Exercise 1 執行以下程式碼。 <!-- eng start --> Run the code below. <!-- eng end --> ```python ### code set_random_seed(0) print_ans = False n = 5 sigma = random_permutation(n) print("n = ", n) print("one-line representation of sigma =", sigma.one_line) if print_ans: print("Two-line representation:") print(sigma.two_line_repr()) print("Cycle representation:") print(sigma.cycle_repr()) print("One may convert sigma back to 12...n by the following swaps:") print(sigma.sort()) print("sgn(sigma) =", sigma.sign()) sigma.digraph().show() P = sigma.matrix() print("permutation matrix =") pretty_print(P) print("det(P) =", P.det()) ``` ##### Exercise 1(a) 寫出 $\sigma$ 的雙行表示法、以及循環表示法。 說明如何將 $\sigma$ 單行表示法經過元素互換變回 $12\ldots n$。 最後求出 $\sgn(\sigma)$。 <!-- eng start --> Find the two-line representation and the cycle representation of $\sigma$. Explain how to start from its one-line representation and reach $12\ldots n$ by switching elements. Then find $\sgn(\sigma)$. <!-- eng end --> **[由 :cloud: 提供]** ##### Ans 1(a) > Set `seed=324`, we get $n=5$\ one-line representation of $\sigma=[3,4,5,1,2]$ Two-line representation of $\sigma$ is : $$\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 1 & 2 \end{array} $$ Cycle representation of $\sigma$ is : $(13524)$. Do following swiches step by step : 1. $5\leftrightarrow 2$ $\longrightarrow$ $34215$ 2. $4\leftrightarrow 1$ $\longrightarrow$ $31245$ 3. $3\leftrightarrow 2$ $\longrightarrow$ $21345$ 4. $2\leftrightarrow 1$ $\longrightarrow$ $12345$ Because we have changed the order for four times, we get to know that $\sgn(\sigma)=(-1)^4=1$. :::warning Sigma defines the mapping: $1\rightarrow 3\rightarrow 5\rightarrow 2\rightarrow 4\rightarrow 1$ so the cycle representation is $(13524)$ ::: ##### Exercise 1(b) 畫出 $\sigma$ 的圖表示法 $G_\sigma$、 計算 $G_\sigma$ 上的圈數、 並求出 $\sgn(\sigma)$。 <!-- eng start --> Draw the graph representation $G_\sigma$ for $\sigma$, count the number of cycles on $G_\sigma$, and then find $\sgn(\sigma)$. <!-- eng end --> **[由 :cloud: 提供]** ##### Ans 1(b) ![](https://i.imgur.com/7A2pwFG.png =300x) By definition : $\sgn(\sigma) = (-1)^{n + c(\sigma)}$. According to the picture, there's one cycle, so $c(\sigma)=1$. And knowing $n=5$, $\sgn(\sigma) = (-1)^{5 + 1}=(-1)^{6}=1$. ##### Exercise 1(c) 寫下 $\sigma$ 的排列矩陣 $P_\sigma$, 並求出 $\det(P_\sigma)$。 <!-- eng start --> Find the permutation matrix $P_\sigma$ for $\sigma$ and then find $\det(P_\sigma)$. <!-- eng end --> **[由 :cloud: 提供]** ##### Ans 1(c) Let $\sigma(i)$ denote the entry in the $i$th row of $P_\sigma$ that equals $1$. We have $\sigma(1)=3$, $\sigma(2)=4$, $\sigma(3)=5$, $\sigma(4)=1$, $\sigma(5)=2$, and all other entries in $P_\sigma$ are $0$. $$ P_\sigma=\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}. $$ By performing row switches $4$ times to transform $P_\sigma$ into the identity matrix, we get $\det(P_\sigma)=(-1)^4=(-1)^{2\times 2}=1.$ :::info What do the experiments try to tell you? (open answer) A permutation can be written in many ways, but it is not difficult to observe that it has a bijection property. ::: :::success Nice. ::: ## Exercises ##### Exercise 2 當 $n = 2$ 時, 下表列出所有 $\mathfrak{S}_n$ 中排列、 其單行表示法、循環表示法、及其正負號: one-line repr | cycle repr | sign --------|--------|-------- $12$ | $(1)(2)$ | $1$ $21$ | $(12)$ | $-1$ 分別建立 $n = 3$ 及 $n = 4$ 的表格。 <!-- eng start --> For $n = 2$, list all permuatations in $\mathfrak{S}_n$ can find the one-line representation, cycle representation, and the sign for each of them. one-line repr | cycle repr | sign --------|--------|-------- $12$ | $(1)(2)$ | $1$ $21$ | $(12)$ | $-1$ Also build the table for $n = 3$ and $n = 4$. <!-- eng end --> **[由 :cloud: 提供]** ##### Ans 2 When $n=3$, there are $3!$ probabilities : one-line repr | cycle repr | sign --------|--------|-------- $123$ | $(1)(2)(3)$ | $1$ $132$ | $(1)(23)$ | $-1$ $213$ | $(12)(3)$ | $-1$ $231$ | $(123)$ | $1$ $312$ | $(132)$ | $1$ $321$ | $(2)(13)$ | $-1$ When $n=4$, there are $4!$ probabilities : one-line repr | cycle repr | sign --------|--------|-------- $1234$ | $(1)(2)(3)(4)$ | $1$ $1243$ | $(1)(2)(34)$ | $-1$ $1324$ | $(1)(4)(23)$ | $-1$ $1342$ | $(1)(234)$ | $1$ $1423$ | $(1)(432)$ | $1$ $1432$ | $(1)(3)(24)$ | $-1$ $2134$ | $(12)(3)(4)$ | $-1$ $2143$ | $(12)(34)$ | $1$ $2314$ | $(123)(4)$ | $1$ $2341$ | $(1234)$ | $-1$ $2413$ | $(1243)$ | $-1$ $2431$ | $(124)(3)$ | $1$ $3124$ | $(321)(4)$ | $1$ $3142$ | $(1342)$ | $-1$ $3214$ | $(13)(2)(4)$ | $-1$ $3241$ | $(134)(2)$ | $1$ $3412$ | $(13)(24)$ | $1$ $3421$ | $(1324)$ | $-1$ $4123$ | $(1432)$ | $-1$ $4132$ | $(142)(3)$ | $1$ $4213$ | $(143)(2)$ | $1$ $4231$ | $(14)(2)(3)$ | $-1$ $4312$ | $(1423)$ | $-1$ $4321$ | $(14)(23)$ | $1$ --- ##### Exercise 3 以下練習討論將一個排列變回單位排列所需的置換數。 <!-- eng start --> The following exercises study the number of steps of switching elements in order to obtain the identity permutation. <!-- eng end --> ##### Exercise 3(a) 令 $\sigma$ 的循環表示法為 $(1,2,3)$。 求要經過幾次置換(元換互換)才能將 $\sigma$ 的單行表示法變回 $123$。 <!-- eng start --> Let $\sigma$ be the permutation with its cycle representation $(1,2,3)$. How many steps of switching elements are required to make it back to the identity permutation with the one-line representation $123$. <!-- eng end --> **[由 :cloud: 提供]** ##### Ans 3(a) Cycle representation shows that the corresponding order is $$ \begin{array}{cccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array} $$ Switching two times will get $123$. --- ##### Exercise 3(b) 令 $\sigma$ 的循環表示法為 $(1,2,3,4)$。 求要經過幾次置換(元換互換)才能將 $\sigma$ 的單行表示法變回 $1234$。 <!-- eng start --> Let $\sigma$ be the permutation with its cycle representation $(1,2,3,4)$. How many steps of switching elements are required to make it back to the identity permutation with the one-line representation $1234$. <!-- eng end --> **[由 :cloud: 提供]** ##### Ans 3(b) Cycle representation shows that the corresponding order is $$ \begin{array}{cccc} 1 & 2 & 3 & 4\\ 2 & 3 & 4 & 1 \end{array} $$ Switching three times will get $1234$. --- ##### Exercise 3(c) 若 $\sigma$ 的循環表示法中只有一個循環且長度為 $n$。 求要經過幾次置換(元換互換)才能將 $\sigma$ 的單行表示法變回 $12\cdots n$。 <!-- eng start --> Suppose $\sigma$ be a permutation with only one cycle of length $n$. How many steps of switching elements are required to make it back to the identity permutation with the one-line representation $12\cdots n$. <!-- eng end --> **[由 :cloud: 提供]** ##### Ans 3(c) Without loss of generality, suppose that the one-line notation of $\sigma$ is $2 \ 3 \cdots n \ 1$, and we can obtain $1 \ 2 \cdots n$ by performing $n-1$ transpositions of $1$ to the front. --- ##### Exercise 3(d) 若 $\sigma$ 的循環表示法中包含 $k$ 個循環, 且每個循環且長度分別為 $n_1, n_2, \ldots, n_k$。 令 $n = n_1 + \cdots + n_k$。 求要經過幾次置換(元換互換)才能將 $\sigma$ 的單行表示法變回 $12\cdots n$。 <!-- eng start --> Suppose $\sigma$ be a permutation with $k$ cycles and their lengths are $n_1, n_2, \ldots, n_k$. Let $n = n_1 + \cdots + n_k$. How many steps of switching elements are required to make it back to the identity permutation with the one-line representation $12\cdots n$. <!-- eng end --> **[由 :cloud: 提供]** ##### Ans 3(d) Suppose $\sigma$ can be decomposed into $k$ cycles, where the length of the $i$-th cycle is $n_i$. For each cycle, if we move its elements forward $n_i-1$ times, we can obtain a new cycle where all the elements are arranged in order. Therefore, each cycle needs to be permuted $n_i-1$ times, equal to its own length $n_i$, in order for all cycles in the cycle representation of a permutation to become $1$. Next, we just need to add up the permutation times of all cycles to obtain the total number of permutations required to transform $\sigma$ into $1\ 2\ \cdots n$. Therefore, if $\sigma$ is decomposed into $k$ cycles, the number of permutations required to transform $\sigma$ into $1\ 2\ \cdots n$ is: $$ (n_1 - 1) + (n_2 - 1) + \cdots + (n_k - 1) $$ This result can be simplified as: $$ n_1 + n_2 + \cdots + n_k - k $$ Because all elements in each cycle appear exactly once, so the total number of elements in the $k$ cycles is $n_1+n_2+\cdots+n_k$. The last element of each cycle does not need to be permuted again, so we need to subtract $k$. --- ##### Exercise 3(e) 說明對任意 $[n]$ 上的排列 $\sigma$, 所需的置換數和 $n + c(\sigma)$ 的奇偶性一致。 <!-- eng start --> For any permutation $\sigma$ on $[n]$, explain why the number of steps of switching elements and $n + c(\sigma)$ have the same parity. <!-- eng end --> ##### Exercise 4 若 $\sigma$ 為 $[n]$ 上的一個排列。 說明 $f(\sigma) = (-1)^{n + c(\sigma)}$ 符合以下性質: 1. $f(\idmap_n) = 1$。 2. 若將 $\sigma$ 的單行表示法中的 $\sigma(i)$ 和 $\sigma(j)$ 互換而得到一個新的排列 $\tau$, 則 $f(\tau) = -f(\sigma)$。 因此 $\sgn(\sigma) = f(\sigma)$ 是一個定義完善的函數。 <!-- eng start --> Let $\sigma$ be a permutation on $[n]$. Explain why $f(\sigma) = (-1)^{n + c(\sigma)}$ has the following properties: 1. $f(\idmap_n) = 1$。 2. Suppose $\tau$ is obtained from $\sigma$ by switching the elements $\sigma(i)$ and $\sigma(j)$ in the one-line representation. Then $f(\tau) = -f(\sigma)$. Therefore, $\sgn(\sigma) = f(\sigma)$ is well-defined function. <!-- eng end --> ##### Exercise 5 給定兩個整數 $n\geq k \geq 0$。 **第一類斯特靈數(Stirling numbers of the first kind)** $s(n,k)$ 指的是 $\mathfrak{S}_n$ 中恰有 $k$ 個循環的排列的個數 乘上 $(-1)^{n-k}$。 **第二類斯特靈數(Stirling numbers of the second kind)** $S(n,k)$ 指的是要把 $[n]$ 分成非空的 $k$ 堆的分法數。 對於 $i,j \in \{0,1,2,3\}$ 將 $s(i,j)$ 寫成一個 $4\times 4$ 矩陣 $S_1$。 對於 $i,j \in \{0,1,2,3\}$ 將 $S(i,j)$ 寫成一個 $4\times 4$ 矩陣 $S_2$。 寫出 $S_1$ 和 $S_2$,並觀察其和 410-7 中矩陣的關係。 <!-- eng start --> Let $n \geq k \geq 0$ be integers. The **Stirling numbers of the first kind** $s(n,k)$ is the number of permutations in $\mathfrak{S}_n$ that has exactly $k$ cycles along with the sign $(-1)^{n-k}$. The **Stirling numbers of the first kind** $S(n,k)$ is the number of ways to partition $[n]$ into $k$ indistinguishable nonempty sets. For each combination of $i,j \in \{0,1,2,3\}$, find $s(i,j)$ and record them into a $4\times 4$ matrix $S_1$. For each combination of $i,j \in \{0,1,2,3\}$, find $S(i,j)$ and record them into a $4\times 4$ matrix $S_2$. Write down $S_1$ and $S_2$ and compare them with what those in 410-7. <!-- eng end -->

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully