changed 3 years ago
Linked with GitHub

向量空間中的矩陣表示法

Creative Commons License
This work by Jephian Lin is licensed under a Creative Commons Attribution 4.0 International License.

\(\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}\)

from lingeo import random_int_list, random_good_matrix
from linspace import vtop

Main idea

Let \(f : V \rightarrow U\) be a linear function,
\(\alpha = \{ {\bf v}_1, \ldots, {\bf v}_n \}\) be a basis of \(V\), and
\(\beta\) a basis of \(U\).
Then the matrix
\[[f]_\alpha^\beta = \begin{bmatrix} | & ~ & | \\ [f({\bf v}_1)]_\beta & \cdots & [f({\bf v}_n)]_\beta \\ | & ~ & | \\ \end{bmatrix} \] has the property that \([f({\bf b})]_\beta = [f]_\alpha^\beta [{\bf b}]_\alpha\).
Therefore, we call \([f]_\alpha^\beta\) the matrix representation of \(f\) with respect to \(\alpha\) and \(\beta\).

The equality can be visualized by the following diagram.
\[\begin{array}{ccc} {\bf b} & \xrightarrow{f} & f({\bf b}) \\ \downarrow & ~ & \downarrow \\ [{\bf b}]_\alpha & \xrightarrow{[f]_\alpha^\beta\cdot\square} & [f({\bf b})]_\beta \\ \end{array} \]

Let \(A = [f]_\alpha^\beta\).
Lots of (if not all) information about \(f\) can be found from the the matrix representation.

  • \(\operatorname{range}(f) = \{{\bf u}\in U: [{\bf u}]_\beta\in\operatorname{range}(A)\}\)
  • \(\operatorname{ker}(f) = \{{\bf v}\in V: [{\bf v}]_\beta\in\operatorname{ker}(A)\}\)
  • \(\operatorname{rank}(f) = \operatorname{rank}(A)\)
  • \(\operatorname{null}(f) = \operatorname{null}(A)\)
Dimension theorem (general)

Let \(f\) be a linear function from \(V\) to \(U\).
Then \(\operatorname{rank}(f) + \operatorname{null}(f) = \dim(V)\).

Side stories

  • derivative
  • transpose

Experiments

Exercise 1

執行以下程式碼。
已知 \(f\)\(\mathcal{P}^2\)\(\mathcal{P}^1\) 的線性函數﹐
\(\alpha\)\(\beta\) 分別為 \(\mathcal{P}^2\)\(\mathcal{P}^1\) 的一組基底。

[程式碼有更新]

### code
set_random_seed(0)
print_ans = False
m,n = 2,3
alpha = random_good_matrix(n,n,n, bound=3)
beta = random_good_matrix(m,m,m, bound=3)
A = matrix(m, random_int_list(m*n))
v = vector(random_int_list(n, 3))
b = alpha * v

print("alpha contains %s polynomials:"%n)
for j in range(n):
    print("v%s ="%(j+1), vtop(alpha.column(j)))

print("beta contains %s polynomials:"%m)
for i in range(m):
    print("u%s ="%(i+1), vtop(beta.column(i)))

for j in range(n):
    print( "f(v%s) = "%(j+1) + " + ".join("%s u%s"%(A[i,j],i+1) for i in range(m)) )
    
print("b =", vtop(b))

if print_ans:
    print("[b]_alpha =", v)
    print("[f(b)]_beta =", A*v)
    print("f(b) =", vtop(beta * A * v))
    print("[f]_alpha^beta =")
    show(A)
Exercise 1(a)

\([{\bf b}]_\alpha\)\([f({\bf b})]_\beta\) 、及 \(f({\bf b})\)

  • aligned 排好,像是
    \[\begin{aligned} \bv_1 &= (1,-3,0), \\ \bv_2 &= (3,-8,-1),\\ \bv_3 &= (1,-1,-1) \end{aligned} \]
  • 後面的 \(f(\bb)\) 也是可以用 aligned 將等號對齊
  • 最後面不要只要數學式,句子要完整

\(Ans:\)
藉由 seed = 0得到
\(\alpha = \{{\bf v}_1, \ {\bf v}_2\, \ {\bf v}_3\}\)\(V\) 的一組基底,
\(\beta = \{{\bf u}_1, \ {\bf u}_2\}\)\(U\) 的一組基底。

\[\begin{aligned} \bv_1 &= (1,-3,0), \\ \bv_2 &= (3,-8,-1),\\ \bv_3 &= (1,-1,-1). \end{aligned} \]

\[\begin{aligned} \bu_1 &=(1,2),\\ \bu_2 &=(1,3). \end{aligned}\]

\[\begin{aligned} f({\bf v}_1)&=4{\bf u}_1+2{\bf u}_2=(6,14),\\ f({\bf v}_2)&=-4{\bf u}_1+4{\bf u}_2=(0,4),\\ f({\bf v}_3)&=-3{\bf u}_1+-4{\bf u}_2=(-7,-18), \end{aligned}\]

\[{\bf b}=(6,-19,-1).\] \({\bf b}\)\({\bf v}_1\)\({\bf v}_2\)\({\bf v}_3\) 表示
經過計算後得 \[{\bf b}=-1{\bf v}_1+3{\bf v}_2-2{\bf v}_3.\] 而由 \({\bf \alpha}\) 表示為 \[[{\bf b}]_\alpha= \begin{bmatrix} -1\\ 3\\ -2\end{bmatrix}. \] 接著計算 \(f({\bf b})\)
因為 \(f\)\(\mathcal{P}^2\)\(\mathcal{P}^1\) 的線性函數
所以 \[\begin{aligned}f({\bf b}) &=f(-1{\bf v}_1+3{\bf v}_2-2{\bf v}_3) \\&=-1f({\bf v}_1)+3f({\bf v}_2)-2f({\bf v}_3) \\&=-10{\bf u}_1+18{\bf u}_2\\&=(8,34).\end{aligned}\]

因此 \[[f({\bf b})]_\beta=\begin{bmatrix} -10\\ 18\end{bmatrix}, \] \[f({\bf b})=\begin{bmatrix} 8\\ 34\end{bmatrix}. \]

Exercise 1(b)
  • 中英數之間空格

\([f]_\alpha^\beta\)

\(Ans:\)
由定義可知 \[[f]_\alpha^\beta=\begin{bmatrix} | & | & |\\ [f({\bf v}_1)]_\beta & [f({\bf v}_2)]_\beta & [f({\bf v}_3)]_\beta\\ | & | & | \\ \end{bmatrix}\] \({\bf v}_1\)\({\bf v}_2\)\({\bf v}_3\) 代入上式得 \[[f]_\alpha^\beta=\begin{bmatrix} 4&-4&-3\\ 2&4&-4\end{bmatrix}. \]

Exercises

Exercise 2

\(f : V \rightarrow \mathbb{R}^m\) 為一線性函數、
\(\alpha = \{{\bf v}_1, \ldots, {\bf v}_n\}\)\(V\) 的一組基底、
\(\beta = \{{\bf u}_1, \ldots, {\bf u}_m\}\)\(U\) 的一組基底。

Exercise 2(a)

\(V = \mathcal{P}^3\)\(U = \mathcal{P}^2\)
\(f(p) = p'\)\(p\) 的微分。
\(\alpha\)\(\beta\) 分別為 \(V\)\(U\) 的標準基底。
\([f]_\alpha^\beta\)\(\operatorname{rank}(f)\)、及 \(\operatorname{null}(f)\)

  • 這題的大型矩陣裡最後面多了一個空行
  • 不要只有數學式,說明寫清楚
  • 標點

\(Ans:\)
因為 \(\alpha\)\(\beta\) 分別為 \(V\)\(U\) 的標準基底。
所以令 \[ \alpha=\{1,x,x^2,x^3\}, \\ \beta=\{1,x,x^2\}。 \] 由定義可知 \[ [f]_\alpha^\beta=\begin{bmatrix} | & | & | & |\\ [f(1)]_\beta & [f(x)]_\beta & [f(x^2)]_\beta & [f(x^3)]_\beta\\ | & | & | & |\\ \end{bmatrix} \\ =\begin{bmatrix} | & | & | & |\\ [0]_\beta & [1]_\beta & [f(2x)]_\beta & [3x^2]_\beta\\ | & | & | & |\\ \end{bmatrix} \\ =\begin{bmatrix} 0 & 1 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 3\\ \end{bmatrix}. \] \(A = [f]_\alpha^\beta\).
因為 \(\operatorname{rank}(f) + \operatorname{null}(f) = \dim(V) = 4\)
\(\operatorname{rank}(f) = \operatorname{rank}(A)=3\)
所以 \(\operatorname{null}(f) = \operatorname{null}(A)=1\)

Exercise 2(b)

\(V = \mathcal{P}^3\)\(U = \mathcal{P}^3\)
\(f(p) = p'\)\(p\) 的微分。
\(\alpha\)\(\beta\) 分別為 \(V\)\(U\) 的標準基底。
\([f]_\alpha^\beta\)\(\operatorname{rank}(f)\)、及 \(\operatorname{null}(f)\)

  • 跟上一題問題一樣

\(Ans:\)
因為 \(\alpha\)\(\beta\) 分別為 \(V\)\(U\) 的標準基底。
所以令 \[ \alpha=\{1,x,x^2,x^3\}, \\ \beta=\{1,x,x^2,x^3\}。 \] 由定義可知 \[ \\ [f]_\alpha^\beta=\begin{bmatrix} | & | & | & |\\ [f(1)]_\beta & [f(x)]_\beta & [f(x^2)]_\beta & [f(x^3)]_\beta\\ | & | & | & |\\ \end{bmatrix} \\ =\begin{bmatrix} | & | & | & |\\ [0]_\beta & [1]_\beta & [f(2x)]_\beta & [3x^2]_\beta\\ | & | & | & |\\ \end{bmatrix} \\ =\begin{bmatrix} 0 & 1 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 3\\ 0 & 0 & 0 & 0\\ \end{bmatrix}. \] \(A = [f]_\alpha^\beta\)
因為 \(\operatorname{rank}(f) + \operatorname{null}(f) = \dim(V)=4\)
\(\operatorname{rank}(f) = \operatorname{rank}(A)=3\)
所以 \(\operatorname{null}(f) = \operatorname{null}(A)=1\)

Exercise 2©

\(V = \mathcal{P}^3\)\(U = \mathcal{P}^4\)
\(f(p) = (1-x)\cdot p\)
\(\alpha\)\(\beta\) 分別為 \(V\)\(U\) 的標準基底。
\([f]_\alpha^\beta\)\(\operatorname{rank}(f)\)、及 \(\operatorname{null}(f)\)

  • 跟上一題問題一樣

\(Ans:\)
因為 \(\alpha\)\(\beta\) 分別為 \(V\)\(U\) 的標準基底。
所以令 \[ \alpha=\{1,x,x^2,x^3\}, \\ \beta=\{1,x,x^2,x^3,x^4\}。 \] 由定義可知 \[ [f]_\alpha^\beta=\begin{bmatrix} | & | & | & |\\ [f(1)]_\beta & [f(x)]_\beta & [f(x^2)]_\beta & [f(x^3)]_\beta\\ | & | & | & |\\ \end{bmatrix} \\ =\begin{bmatrix} | & | & | & |\\ [1-x]_\beta & [x-x^2]_\beta & [x^2-x^3]_\beta & [x^3-x^4]_\beta\\ | & | & | & |\\ \end{bmatrix} \\ =\begin{bmatrix} 1 & 0 & 0 & 0\\ -1 & 1 & 0 & 0\\ 0 & -1 & 1 & 0\\ 0 & 0 & -1 & 1\\ 0 & 0 & 0 & -1\\ \end{bmatrix} \] \(A = [f]_\alpha^\beta\)
因為 \(\operatorname{rank}(f) + \operatorname{null}(f) = \dim(V)=4\)
\(\operatorname{rank}(f) = \operatorname{rank}(A)=4\)
所以 \(\operatorname{null}(f) = \operatorname{null}(A)=0\)

Exercise 2(d)

\(V = U = \mathcal{M}_{2,2}\)
\(f(A) = A^\top\)\(A\) 的轉置。
\(\alpha = \beta\)\(\mathcal{M}_{2,2}\) 的標準基底。
\([f]_\alpha^\beta\)\(\operatorname{rank}(f)\)、及 \(\operatorname{null}(f)\)

  • 跟上一題問題一樣
  • 基底選錯了,感覺你在回答 \(\mathcal{M}_{2,1}\)

\(Ans:\)
因為 \(\alpha\)\(\beta\)\(\mathcal{M}_{2,2}\) 的標準基底。
所以令 \[ \alpha=\beta=\left\{ \begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0\\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix} \right\}. \] 由定義可知 \[ [f]_\alpha^\beta=\begin{bmatrix} | & |&|&|\\ [f(\begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix})]_\beta & [f(\begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix})]_\beta&[f(\begin{bmatrix} 0 & 0\\ 1 & 0 \end{bmatrix})]_\beta &[f(\begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix})]_\beta \\ | & |&|&|\\ \end{bmatrix} \\ =\begin{bmatrix} | & | &|&| \\ [\begin{bmatrix}1 & 0\\0&0\\\end{bmatrix}]_\beta & [\begin{bmatrix} 0 & 0\\ 1 & 0 \end{bmatrix}]_\beta &[\begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}]_\beta &[\begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix}]_\beta\\ | & | &|&| \\ \end{bmatrix} \\ =\begin{bmatrix} 1 & 0&0&0\\ 0 & 0&1&0\\ 0 & 1&0&0\\ 0 & 0&0&1\\ \end{bmatrix}. \] \(A = [f]_\alpha^\beta\).
因為 \(\operatorname{rank}(f) + \operatorname{null}(f) = \dim(V)=4\)
\(\operatorname{rank}(f) = \operatorname{rank}(A)=4\)
所以 \(\operatorname{null}(f) = \operatorname{null}(A)=0\)

Exercise 2(e)


\[M = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ \end{bmatrix}. \]
\(V = U = \mathcal{M}_{2,2}\)
\(f(A) = MA\)
\(\alpha = \beta\)\(\mathcal{M}_{2,2}\) 的標準基底。
\([f]_\alpha^\beta\)\(\operatorname{rank}(f)\)、及 \(\operatorname{null}(f)\)

  • 跟上一題問題一樣
  • 基底選錯了,感覺你在回答 \(\mathcal{M}_{2,1}\)

\(Ans:\)
因為 \(\alpha\)\(\beta\)\(\mathcal{M}_{2,2}\) 的標準基底。
所以令 \[ \alpha=\beta=\left\{ \begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0\\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix} \right\}. \] 由定義可知 \[ [f]_\alpha^\beta=\begin{bmatrix} | & |&|&|\\ [f(\begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix})]_\beta & [f(\begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix})]_\beta&[f(\begin{bmatrix} 0 & 0\\ 1 & 0 \end{bmatrix})]_\beta &[f(\begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix})]_\beta \\ | & |&|&|\\ \end{bmatrix} \\ =\begin{bmatrix} | & |&|&|\\ [\begin{bmatrix}1&0\\2&0\\\end{bmatrix}]_\beta & [\begin{bmatrix}0&1\\0&2\\\end{bmatrix}]_\beta&[\begin{bmatrix}2&0\\4&0\\\end{bmatrix}]_\beta &[\begin{bmatrix}0&2\\0&4\\\end{bmatrix}]_\beta \\ | & |&|&|\\ \end{bmatrix} \\ =\begin{bmatrix} 1 & 0&2&0\\ 0 & 1&0&2\\ 2 & 0&4&0\\ 0 & 2&0&4\\ \end{bmatrix}. \] \(A = [f]_\alpha^\beta\).
因為 \(\operatorname{rank}(f) + \operatorname{null}(f) = \dim(V)=4\)
\(\operatorname{rank}(f) = \operatorname{rank}(A)=2\)
所以 \(\operatorname{null}(f) = \operatorname{null}(A)=2\)

目前分數 6.5

Select a repo