or
or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up
Syntax | Example | Reference | |
---|---|---|---|
# Header | Header | 基本排版 | |
- Unordered List |
|
||
1. Ordered List |
|
||
- [ ] Todo List |
|
||
> Blockquote | Blockquote |
||
**Bold font** | Bold font | ||
*Italics font* | Italics font | ||
~~Strikethrough~~ | |||
19^th^ | 19th | ||
H~2~O | H2O | ||
++Inserted text++ | Inserted text | ||
==Marked text== | Marked text | ||
[link text](https:// "title") | Link | ||
 | Image | ||
`Code` | Code |
在筆記中貼入程式碼 | |
```javascript var i = 0; ``` |
|
||
:smile: | ![]() |
Emoji list | |
{%youtube youtube_id %} | Externals | ||
$L^aT_eX$ | LaTeX | ||
:::info This is a alert area. ::: |
This is a alert area. |
On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?
Please give us some advice and help us improve HackMD.
Do you want to remove this version name and description?
Syncing
xxxxxxxxxx
體驗喬丹標準型
This work by Jephian Lin is licensed under a Creative Commons Attribution 4.0 International License.
\(\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}\)
Main idea
Let \(\lambda\in\mathbb{C}\) and \(n\) an integer.
A Jordan block of \(\lambda\) of order \(n\) is the \(n\times n\) matrix
\[J_{\lambda,n} = \begin{bmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & & 1 \\ & & & \lambda \\ \end{bmatrix}. \]
According to the spectrum theorem, for every symmetric matrix \(A\), there is an orthonormal basis \(\beta\) such that \([f_A]_\beta^\beta\) is orthogonal.
This is not necessarily true for not necessarily symmetric matrices, even we give up the condition of being orthonormal.
Any Jordan block of order at least \(2\) is such an example.
Fortunately, we have the folloing canonical form.
Jordan canonical form
Let \(A\) be an \(n\times n\) matrix.
Then there is a basis \(\beta\) of \(\mathbb{R}^n\) such that \[[f_A]_\beta^\beta = J_{\lambda_1,n_1}\oplus \cdots \oplus J_{\lambda_d,n_d}, \] where \(\oplus\) is the direct sum of two matrices.
That is, there is an invertible matrix \(Q\) such that \(Q^{-1}AQ = J_{\lambda_1,n_1}\oplus \cdots \oplus J_{\lambda_d,n_d}\).
We say two \(n\times n\) matrices \(A\) and \(B\) are similar if there is an invertible matrix \(Q\) such that \(Q^{-1}AQ = B\).
Equivalently, \(A\) and \(B\) are similar if there is a basis \(\beta\) of \(\mathbb{R}^n\) such that \([f_A]_\beta^\beta = B\).
It is not trivial how to determine whether two given matrices are similar.
It turns out that two matrices are similar if and only if they have the same Jordan canonical form.
Side stories
Experiments
Exercise 1
執行以下程式碼。
已知 \(A\) 和 \(B\) 相似﹐且 \(Q^{-1}AQ = B\)。
Exercise 1(a)
驗證 \(A\) 和 \(B\) 有相同的秩、核數、行列式值。
Exercise 1(b)
若已知 \(A{\bf v} = {\bf b}\)。
求 \(B(Q^{-1}{\bf v})\)。
Exercises
Exercise 2
令 \(A\) 和 \(B\) 為兩 \(n\times n\) 矩陣。
證明以下敘述等價:
Exercise 3
令
\[J = J_{2,3} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \\ \end{bmatrix}. \]
Exercise 3(a)
說明若存在一組基底 \(\beta = \{ {\bf v}_1,\ldots,{\bf v}_3 \}\) 使得 \([f_J]_\beta^\beta\) 是對角矩陣 \(\operatorname{diag}(\lambda_1,\lambda_2,\lambda_3)\)﹐
則對每個 \(i = 1,\ldots, 3\) 都有 \(J{\bf v}_i = \lambda_i {\bf v}_i\)。
Exercise 3(b)
說明若這樣的基底存在﹐必定是 \(\lambda_1 = \cdots = \lambda_3 = 2\)﹐
然而 \(J\) 不可能和 \(2I\) 相似。
Exercise 4
令 \(A\) 為一 \(n\times n\) 矩陣。
已知 \(\beta\) 為 \(\mathbb{R}^n\) 的一組基底使得 \([f_A]_\beta^\beta = J = J_{\lambda,n}\)。
將每個 \(A{\bf v}_i\) 寫成 \(\beta\) 的線性組合。
Exercise 5
令
\[A = \begin{bmatrix} 5 & 1 & 0 \\ -7 & -1 & 1 \\ -6 & -2 & 2 \end{bmatrix}. \]
令
\({\bf v}_1 = (1, -3, -2)\)、
\({\bf v}_2 = (1, -2, -2)\)、
\({\bf v}_3 = (2, -5, -3)\)、
\(\beta = \{ {\bf v}_1, \ldots, {\bf v}_3 \}\)。
求 \([f_A]_\beta^\beta\)。
Exercise 6
證明兩矩陣相似是等價關係。