Name | Value |
---|---|
MAX_BYTES_PER_TRANSACTION_PAYLOAD | 2**20 |
MAX_APPLICATION_TRANSACTIONS | 2**14 |
BYTES_PER_LOGS_BLOOM | 2**8 (= 256) |
BLOCK_ROOTS_FOR_EVM_SIZE | 2**8 (= 256) |
BeaconState
Note: BeaconState
fields remain unchanged other than the removal of eth1_data_votes
and addition of application_state_root
. The latter stores the root hash of ethereum application state.
class BeaconState(Container):
# Versioning
genesis_time: uint64
genesis_validators_root: Root
slot: Slot
fork: Fork
# History
latest_block_header: BeaconBlockHeader
block_roots: Vector[Root, SLOTS_PER_HISTORICAL_ROOT]
state_roots: Vector[Root, SLOTS_PER_HISTORICAL_ROOT]
historical_roots: List[Root, HISTORICAL_ROOTS_LIMIT]
# Eth1
eth1_data: Eth1Data
# [removed] eth1_data_votes
eth1_deposit_index: uint64
application_state_root: Bytes32
# Registry
validators: List[Validator, VALIDATOR_REGISTRY_LIMIT]
balances: List[Gwei, VALIDATOR_REGISTRY_LIMIT]
# Randomness
randao_mixes: Vector[Bytes32, EPOCHS_PER_HISTORICAL_VECTOR]
# Slashings
slashings: Vector[Gwei, EPOCHS_PER_SLASHINGS_VECTOR] # Per-epoch sums of slashed effective balances
# Attestations
previous_epoch_attestations: List[PendingAttestation, MAX_ATTESTATIONS * SLOTS_PER_EPOCH]
current_epoch_attestations: List[PendingAttestation, MAX_ATTESTATIONS * SLOTS_PER_EPOCH]
# Finality
justification_bits: Bitvector[JUSTIFICATION_BITS_LENGTH] # Bit set for every recent justified epoch
previous_justified_checkpoint: Checkpoint # Previous epoch snapshot
current_justified_checkpoint: Checkpoint
finalized_checkpoint: Checkpoint
BeaconBlockBody
Note: BeaconBlockBody
fields remain unchanged other than the addition of application_payload
.
class BeaconBlockBody(phase0.BeaconBlockBody):
application_payload: ApplicationPayload # User execution payload
Transaction
Application transaction fields structured as an SSZ object for inclusion in an ApplicationPayload
contained within a BeaconBlock
.
class Transaction(Container):
nonce: uint64
gas_price: uint256
gas_limit: uint64
recipient: Bytes20
value: uint256
input: List[Bytes1, MAX_BYTES_PER_TRANSACTION_PAYLOAD]
v: uint256
r: uint256
s: uint256
ApplicationPayload
The application payload included in a BeaconBlock
.
class ApplicationPayload(Container):
parent_hash: Bytes32 # Hash of parent of virtial eth1 block
block_hash: Bytes32 # Hash of virtual eth1 block
coinbase: Bytes20
state_root: Bytes32
gas_limit: uint64
gas_used: uint64
receipt_root: Bytes32
logs_bloom: Vector[Bytes1, BYTES_PER_LOGS_BLOOM]
difficulty: uint64 # Temporary field, will be removed later on
transactions: List[Transaction, MAX_APPLICATION_TRANSACTIONS]
def compute_time_at_slot(state: BeaconState, slot: Slot) -> uint64:
return uint64(state.genesis_time + slot * SECONDS_PER_SLOT)
def get_recent_beacon_block_roots(state: BeaconState, qty: uint64) -> Sequence[Bytes32]:
return [get_block_root_at_slot(state.slot - i) if GENESIS_SLOT + i < state.slot else Bytes32() for i in reversed(range(1, qty + 1))]
def get_beacon_block_roots_for_evm(state: BeaconState) -> Sequence[Bytes32]:
num_block_roots = min(BLOCK_ROOTS_FOR_EVM_SIZE, SLOTS_PER_HISTORICAL_ROOT)
return get_recent_beacon_block_roots(state, num_block_roots)
def compute_randao_mix(state: BeaconState, randao_reveal: BLSSignature) -> Bytes32:
epoch = get_current_epoch(state)
return xor(get_randao_mix(state, epoch), hash(randao_reveal))
def get_application_block_hash(block: BeaconBlock) -> Bytes32:
return block.body.application_payload.block_hash
def process_block(state: BeaconState, block: BeaconBlock) -> None:
process_block_header(state, block)
process_randao(state, block.body)
process_eth1_data(state, block.body)
process_operations(state, block.body)
process_application_payload(state, block.body)
def process_eth1_data(state: BeaconState, body: BeaconBlockBody) -> None:
state.eth1_data = body.eth1_data
ApplicationState
Let class ApplicationState
be the abstract class representing ethereum application state.
BeaconChainData
class BeaconChainData(Container):
slot: Slot
randao_mix: Bytes32
timestamp: uint64
recent_block_roots: Sequence[Bytes32]
get_application_state
Let get_application_state(application_state_root: Bytes32) -> ApplicationState
be the function that given the root hash returns a copy of ethereum application state. The body of the function is implementation dependant.
Let application_state_transition(application_state: ApplicationState, beacon_chain_data: BeaconChainData, application_payload: ApplicationPayload) -> None
be the transition function of ethereum application state. The body of the function is implementation dependant.
Note: application_state_transition
must throw AssertionError
if either transition or post-transition verifications has failed.
Note: one of potential implementations of this function is delegating the call to eth2_insertBlock.
process_application_payload
def process_application_payload(state: BeaconState, body: BeaconBlockBody) -> None:
"""
Note: This function is designed to be able to be run in parallel with
the other `process_block` sub-functions
"""
# Utilizes `compute_randao_mix` to avoid any assumptions about
# the processing of other `process_block` sub-functions
beacon_chain_data = BeaconChainData(
slot=state.slot,
randao_mix=compute_randao_mix(state, body.randao_reveal),
timestamp=compute_time_at_slot(state.genesis_time, state.slot),
recent_block_roots=get_beacon_block_roots_for_evm(state)
)
application_state = get_application_state(state.application_state_root)
application_state_transition(application_state, beacon_chain_data, body.application_payload)
state.application_state_root = body.application_payload.state_root
Notes:
get_eth1_data
Let get_eth1_data(application_state_root: Bytes32) -> Eth1Data
be the function that returns the Eth1Data
obtained from the application state specified by application_state_root
.
Note: This is a function of the state of the beacon chain deposit contract. It can be read from the eth1 state and/or logs.
is_valid_eth1_data
Used by fork-choice handler, on_block
, to
def is_valid_eth1_data(store: Store, block: BeaconBlock) -> boolean:
parent_state = store.block_states[block.parent_root]
expected_eth1_data = get_eth1_data(parent_state.application_state_root)
actual_eth1_data = block.body.eth1_data
is_correct_root = expected_eth1_data.deposit_root == actual_eth1_data.deposit_root
is_correct_count = expected_eth1_data.deposit_count == actual_eth1_data.deposit_count
return is_correct_root and is_correct_count
on_block
Note: The only modification is the addition of the Eth1Data
validity assumption.
def on_block(store: Store, signed_block: SignedBeaconBlock) -> None:
block = signed_block.message
# Parent block must be known
assert block.parent_root in store.block_states
# Make a copy of the state to avoid mutability issues
pre_state = copy(store.block_states[block.parent_root])
# Blocks cannot be in the future. If they are, their consideration must be delayed until the are in the past.
assert get_current_slot(store) >= block.slot
# Check that block is later than the finalized epoch slot (optimization to reduce calls to get_ancestor)
finalized_slot = compute_start_slot_at_epoch(store.finalized_checkpoint.epoch)
assert block.slot > finalized_slot
# Check block is a descendant of the finalized block at the checkpoint finalized slot
assert get_ancestor(store, block.parent_root, finalized_slot) == store.finalized_checkpoint.root
# [Added] Check that Eth1 data is correct
assert is_valid_eth1_data(store, block)
# Check the block is valid and compute the post-state
state = pre_state.copy()
state_transition(state, signed_block, True)
# Add new block to the store
store.blocks[hash_tree_root(block)] = block
# Add new state for this block to the store
store.block_states[hash_tree_root(block)] = state
# Update justified checkpoint
if state.current_justified_checkpoint.epoch > store.justified_checkpoint.epoch:
if state.current_justified_checkpoint.epoch > store.best_justified_checkpoint.epoch:
store.best_justified_checkpoint = state.current_justified_checkpoint
if should_update_justified_checkpoint(store, state.current_justified_checkpoint):
store.justified_checkpoint = state.current_justified_checkpoint
# Update finalized checkpoint
if state.finalized_checkpoint.epoch > store.finalized_checkpoint.epoch:
store.finalized_checkpoint = state.finalized_checkpoint
# Potentially update justified if different from store
if store.justified_checkpoint != state.current_justified_checkpoint:
# Update justified if new justified is later than store justified
if state.current_justified_checkpoint.epoch > store.justified_checkpoint.epoch:
store.justified_checkpoint = state.current_justified_checkpoint
return
# Update justified if store justified is not in chain with finalized checkpoint
finalized_slot = compute_start_slot_at_epoch(store.finalized_checkpoint.epoch)
ancestor_at_finalized_slot = get_ancestor(store, store.justified_checkpoint.root, finalized_slot)
if ancestor_at_finalized_slot != store.finalized_checkpoint.root:
store.justified_checkpoint = state.current_justified_checkpoint
All validator responsibilities remain unchanged other than those noted below. Namely, the modification of Eth1Data
and the addition of ApplicationPayload
.
BeaconBlockBody
The block.body.eth1_data
field is for block proposers to publish recent Eth1 data. This recent data contains deposit root (as calculated by the get_deposit_root()
method of the deposit contract) and deposit count after processing of the parent
block. The fork choice verifies Eth1 data of a block, then state.eth1_data
updates immediately allowing new deposits to be processed. Each deposit in block.body.deposits
must verify against state.eth1_data.eth1_deposit_root
.
get_eth1_data
Let get_eth1_data(application_state_root: Bytes32) -> Eth1Data
be the function that returns the Eth1Data
obtained from the application state specified by application_state_root
.
Note: This is a function of the state of the beacon chain deposit contract. It can be read from the eth1 state and/or logs.
block.body.eth1_data = get_eth1_data(state.application_state_root)
.produce_application_payload
Let produce_application_payload(parent_hash: Bytes32, beacon_chain_data: BeaconChainData) -> ApplicationPayload
be the function that produces new instance of application payload.
Note: one of potential implementations of this function is delegating the call to eth2_produceBlock.
randao_reveal
be block.body.randao_reveal
of the block that is being producedblock.body.application_payload = get_application_payload(state, parent, randao_reveal)
where:
def get_application_payload(state: BeaconState,
parent: BeaconBlock,
randao_reveal: BLSSignature) -> ApplicationPayload:
application_parent_hash = get_application_block_hash(parent)
beacon_chain_data = BeaconChainData(
slot=state.slot,
randao_mix=compute_randao_mix(state, randao_reveal),
timestamp=compute_time_at_slot(state.genesis_time, state.slot),
recent_block_roots=get_beacon_block_roots_for_evm(state)
)
return produce_application_payload(application_parent_hash, beacon_chain_data)
TBD