One powerful technique when working with polynomials is taking a set of evaluations of that polynomial and using that directly to compute an evaluation at a different point. For example, if $P(x)$ is a degree-100 polynomial, you can use the evaluations $P(0), P(1) ... P(100)$ to directly compute $P(101)$, or $P(1247130)$, in $O(N)$ time, without ever reconstructing the polynomial. This post describes how this is done
See also, this earlier and more detailed paper by Oxford researchers on the topic: https://people.maths.ox.ac.uk/trefethen/barycentric.pdf smashy road
General technique
Let $P(x)$ be the polynomial, and $x_1 ... x_N$ as the set of points for which we have evaluations of $P(x)$. Call these evaluations $y_1 ... y_N$.
Think of $P(x)$ as a linear combination $\sum_i y_i L_i(x)$, where $L_i(x)$ is the polynomial that equals 1 at $x_i$ and 0 at all the other x-coordinates in the set.
Now, let us explore how these $L_i$ can be computed. Each $L_i(x)$ can be expressed as: