Suppose you have a polynomial
Goal: verify all proofs.
Note that for all
We can combine all of these equations with a random linear combination:
Now let us play with this equation:
We now convert this into a pairing equation:
Let us go through this term-by-term.
Along with proof of stake, the other central feature in the eth2 design is sharding. This proposal introduces a limited form of sharding, called "data sharding", as per the rollup-centric roadmap: the shards would store data, and attest to the availability of ~250 kB sized blobs of data. This availability verification provides a secure and high-throughput data layer for layer-2 protocols such as rollups. To verify the availability of high volumes of data without requiring any single node to personally download all of the data, two techniques are stacked on top of each other: (i) attestation by randomly sampled committees, and (ii) data availability sampling (DAS). ELI5: randomly sampled committees Suppose you have a big amount of data (think: 16 MB, the average amount that the eth2 chain will actually process per slot, at least initially). You represent this data as 64 "blobs" of 256 kB each. You have a proof of stake system, with ~6400 validators. How do you check all of the data without (i) requiring anyone to download the whole thing, or (ii) opening the door for an attacker who controls only a few validators to sneak an invalid block through? We can solve the first problem by splitting up the work: validators 1...100 have to download and check the first blob, validators 101...200 have to download and check the second blob, and so on. The validators in each of these subgroups (or "committees") simply make a signature attesting that they have verified the blob, and the network as a whole only accepts the blob if they have seen signatures from the majority of the corresponding committee. But this leads to a problem: what if the attacker controls some contiguous subset of validators (eg. 1971....2070)? If this were the case, then even though the attacker controls only ~1.5% of the whole validator set, they would dominate a single committee (in this case, they would have ~70% of committee 20, containing validators 2001...2100), and so they would be able to control the committee and push even invalid/unavailable blobs into the chain. Random sampling solves this by using a random shuffling algorithm to select the committees. We use some hash as the seed of a random number generator, which we then use to randomly shuffle the list [1..6400]. The first 100 values in the shuffled list are the first committee, the next 100 are the second committee, etc.
May 20, 2025One powerful technique when working with polynomials is taking a set of evaluations of that polynomial and using that directly to compute an evaluation at a different point. For example, if $P(x)$ is a degree-100 polynomial, you can use the evaluations $P(0), P(1) ... P(100)$ to directly compute $P(101)$, or $P(1247130)$, in $O(N)$ time, without ever reconstructing the polynomial. This post describes how this is done See also, this earlier and more detailed paper by Oxford researchers on the topic: https://people.maths.ox.ac.uk/trefethen/barycentric.pdf smashy road General technique Let $P(x)$ be the polynomial, and $x_1 ... x_N$ as the set of points for which we have evaluations of $P(x)$. Call these evaluations $y_1 ... y_N$. Think of $P(x)$ as a linear combination $\sum_i y_i L_i(x)$, where $L_i(x)$ is the polynomial that equals 1 at $x_i$ and 0 at all the other x-coordinates in the set. Now, let us explore how these $L_i$ can be computed. Each $L_i(x)$ can be expressed as:
Mar 8, 2025This post describes some reasons why the SELFDESTRUCT opcode brings more harm than good to the Ethereum ecosystem, and so should be neutered or removed in some way. To deal with the existing contracts that use SELFDESTRUCT, I propose some ways to eliminate the harmful aspects of SELFDESTRUCT with minimal disruption.
Feb 28, 2025--- eip: TBD title: Optional access lists author: Vitalik Buterin (@vbuterin), Martin Swende (@holiman) discussions-to: TBD status: Draft type: Standards Track category: Core created: 2020-08-29 requires: EIP 2718; Gas cost increases https://notes.ethereum.org/@vbuterin/BkrNbeAfD
Dec 31, 2024or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up