Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 將可逆矩陣展開為基本矩陣的乘積 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}}$ ```python from lingeo import random_good_matrix, row_operation_process ``` ## Main idea Recall that the elementary matrix of a row operation is the resulting matrix of performing the row opertion on the identity matrix. (See Section 113 for more details.) Let $A$ be a matrix and $R$ its reduced echelon form. Then one may perform row operations on $A$ to obtain $R$. Therefore, there is a sequence of elementary matrices $E_1, \ldots, E_k$ such that $$ E_k\cdots E_1 A = R. $$ Since any row operation is revertible, $$ E_1^{-1}\cdots E_k^{-1} R = A $$ where $E_i^{-1}$ is the elementary matrix of the reverse row operation corresponding to $E_i$. When $A$ is a square matrix and is invertible, its reduced echelon form is the identity matrix $I_n$. Therefore, $A$ can be written as the product of a sequence of elementary matrices $$ A = F_1 \cdots F_k. $$ Note that this decomposition is not unique. In particular, any swapping operation $$ \rho_i\leftrightarrow\rho_j $$ can be replaced by $$ \begin{aligned} \rho_j&: + \rho_i, \\ \rho_i&: - \rho_i, \\ \rho_j&: + \rho_i,\text{ and} \\ \rho_i&: \times (-1) \end{aligned} $$ in order. ## Side stories - column operation - congruent - swap variables ## Experiments ##### Exercise 1 執行以下程式碼。 ```python ### code set_random_seed(0) print_ans = False n = 3 A = random_good_matrix(n,n,n) print("A") pretty_print(A) if print_ans: elems = row_operation_process(A, inv=True) pretty_print(elems) ``` 執行程式碼 `seed = 0` 得 $$A=\begin{bmatrix} 1 & 3 & 5 \\ -5 & -14 & -30\\ -15 & -42 & -89 \end{bmatrix}. $$ ##### Exercise 1(a) 將 $A$ 用列運算化簡為單位矩陣, 並將過程依序記錄下來。 答: $$\begin{bmatrix} 1 & 3 & 5 \\ -5 & -14 & -30\\ -15 & -42 & -89 \end{bmatrix}\xrightarrow{\rho_2: +5\rho_1} \begin{bmatrix} 1 & 3 & 5 \\ 0 & 1 & -5\\ -15 & -42 & -89 \end{bmatrix} \xrightarrow{\rho_3:+15\rho_1} \begin{bmatrix} 1 & 3 & 5 \\ 0 & 1 & -5\\ 0 & 3 & -14 \end{bmatrix} \xrightarrow{\rho_1: -3\rho_2} $$ $$\begin{bmatrix} 1 & 0 & 20 \\ 0 & 1 & -5\\ 0 & 3 & -14 \end{bmatrix} \xrightarrow{\rho_3:-3\rho_2} \begin{bmatrix} 1 & 0 & 20 \\ 0 & 1 & -5\\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\rho_1: -20\rho_3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -5\\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\rho_2: +5\rho_3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}. $$ :::success 水~ ::: ##### Exercise 1(b) 將 $A$ 寫成基本矩陣的乘積。 答: 因為$$ \begin{bmatrix} 1 & 0 & -20 \\ 0 & 1 & 5\\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & -3 & 0 \\ 0 & 1 & 0\\ 0 & -3 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0\\ 15 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 3 & 5 \\ -5 & -14 & -30\\ -15 & -42 & -89 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}. $$ 所以$$ \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0\\ -15 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0\\ 0 & 3 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 20 \\ 0 & 1 & -5\\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 5 \\ -5 & -14 & -30\\ -15 & -42 & -89 \end{bmatrix}=A. $$ ## Exercises ##### Exercise 2 執行以下程式碼。 ```python ### code set_random_seed(0) print_ans = False n = 3 A, R, pvts = random_good_matrix(n,n + 1,n, return_answer=True) print("A") pretty_print(A) print("R") pretty_print(R) if print_ans: elems = row_operation_process(A) pretty_print(*(elems[::-1]), A, LatexExpr("="), R) elems = row_operation_process(A, inv=True) pretty_print(*elems, R, LatexExpr("="), A) ``` 藉由 `seed = 0`得到 $$A=\begin{bmatrix} 1 & -5 & 0 & -22\\ -3 & 16 & 3 & 56\\ -9 & 49 & 13 & 153 \end{bmatrix}、 $$ $$R=\begin{bmatrix} 1 & 0 & 0 & 3\\ 0 & 1 & 0 & 5\\ 0 & 0 & 1 & -5 \end{bmatrix}. $$ ##### Exercise 2(a) 找出一些基本矩陣 $E_1,\ldots, E_k$ 使得 $E_k\cdots E_1 A = R$。 答: 因為 $$\begin{bmatrix} 1 & -5 & 0 & -22\\ -3 & 16 & 3 & 56\\ -9 & 49 & 13 & 153 \end{bmatrix}\xrightarrow{\rho_2: +3\rho_1} \begin{bmatrix} 1 & -5 & 0 & -22\\ 0 & 1 & 3 & -10\\ -9 & 49 & 13 & 153 \end{bmatrix}\xrightarrow{\rho_3: +9\rho_1} \begin{bmatrix} 1 & -5 & 0 & -22\\ 0 & 1 & 3 & -10\\ 0 & 4 & 13 & -45 \end{bmatrix}\xrightarrow{\rho_1:+5\rho_2} \begin{bmatrix} 1 & 0 & 15 & -72\\ 0 & 1 & 3 & -10\\ 0 & 4 & 13 & -45 \end{bmatrix}$$ $$\xrightarrow{\rho_3: -4\rho_2} \begin{bmatrix} 1 & 0 & 15 & -72\\ 0 & 1 & 3 & -10\\ 0 & 0 & 1 & -5 \end{bmatrix}\xrightarrow{\rho_1: -15\rho_3} \begin{bmatrix} 1 & 0 & 0 & 3\\ 0 & 1 & 3 & -10\\ 0 & 0 & 1 & -5 \end{bmatrix}\xrightarrow{\rho_2: -3\rho_3} \begin{bmatrix} 1 & 0 & 0 & 3\\ 0 & 1 & 0 & 5\\ 0 & 0 & 1 & -5 \end{bmatrix} $$ 可得 $$E_1=\begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}、E_2=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0\\ 9 & 0 & 1 \end{bmatrix}、E_3=\begin{bmatrix} 1 & 5 & 0 \\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}、$$ $$E_4=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0\\ 0 & -4 & 1 \end{bmatrix}、E_5=\begin{bmatrix} 1 & 0 & -15 \\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}、E_6=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -3\\ 0 & 0 & 1 \end{bmatrix}, $$ 使得 $E_6 E_5 E_4 E_3 E_2 E_1 A = R$ 。 :::success 漂亮 ::: ##### Exercise 2(b) 找出一些基本矩陣 $F_1,\ldots, F_k$ 使得 $F_1\cdots F_k R = A$。 答: 因為 $E_6 E_5 E_4 E_3 E_2 E_1 A = R$ ,且 $E_1,E_2,E_3,E_4,E_5,E_6$ 皆有反方陣,可知 $A =E_1 ^{-1} E_2 ^{-1} E_3 ^{-1} E_4 ^{-1} E_5 ^{-1} E_6 ^{-1} R$ , 所以可得 $$F_1=E_1 ^{-1}=\begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}、F_2=E_2 ^{-1}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0\\ -9 & 0 & 1 \end{bmatrix}、 $$ $$F_3=E_3 ^{-1}=\begin{bmatrix} 1 & -5 & 0 \\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}、F_4=E_4 ^{-1}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0\\ 0 & 4 & 1 \end{bmatrix}、$$ $$F_5=E_5 ^{-1}=\begin{bmatrix} 1 & 0 & 15 \\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}、F_6=E_6 ^{-1}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 3\\ 0 & 0 & 1 \end{bmatrix}。 $$ ##### Exercise 3 執行以下程式碼。 ```python ### code set_random_seed(0) print_ans = False n = 3 A, R, pvts = random_good_matrix(n,n + 1,n - 1, return_answer=True) print("A") pretty_print(A) print("R") pretty_print(R) if print_ans: elems = row_operation_process(A) pretty_print(*(elems[::-1]), A, LatexExpr("="), R) elems = row_operation_process(A, inv=True) pretty_print(*elems, R, LatexExpr("="), A) ``` 題目給定 `seed=0` , $A = \begin{bmatrix} 1 & 0 & 3 & 5 \\ 3 & 1 & 4 & 10 \\ 6 & 3 & 3 & 15 \end{bmatrix} , R = \begin{bmatrix} 1 & 0 & 3 & 5 \\ 0 & 1 & -5 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ ##### Exercise 3(a) 找出一些基本矩陣 $E_1,\ldots, E_k$ 使得 $E_k\cdots E_1 A = R$。 答: 因為 $$\begin{bmatrix} 1 & 0 & 3 & 5 \\ 3 & 1 & 4 & 10 \\ 6 & 3 & 3 & 15 \end{bmatrix}\xrightarrow{\rho_2: -3\rho_1} \begin{bmatrix} 1 & 0 & 3 & 5 \\ 0 & 1 & -5 & -5 \\ 6 & 3 & 3 & 15 \end{bmatrix} \xrightarrow{\rho_3:-6\rho_1} \begin{bmatrix} 1 & 0 & 3 & 5 \\ 0 & 1 & -5 & -5 \\ 0 & 3 & -15 & -15 \end{bmatrix} \xrightarrow{\rho_3:-3\rho_2} \begin{bmatrix} 1 & 0 & 3 & 5 \\ 0 & 1 & -5 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix} $$ 所以得 $E_1 = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} , E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -6 & 0 & 1 \end{bmatrix} , E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix} 。$ ##### Exercise 3(b) 找出一些基本矩陣 $F_1,\ldots, F_k$ 使得 $F_1\cdots F_k R = A$。 答: 因為 $E_3 E_2 E_1 A = R$ , 故我們取其反矩陣使得 $A = E_1 ^{-1} E_2 ^{-1} E_3 ^{-1} R$ , 得 $F_1 = E_1 ^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} , F_2 = E_2 ^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 6 & 0 & 1 \end{bmatrix} , F_3 = E_3 ^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} 。$ ##### Exercise 4 將 $$ A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} $$ 寫成基本矩陣的乘積, 且所用到的基本矩陣沒有對應到「兩列交換」這個動作。 答: 由矩陣列運算 $$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix}\xrightarrow{\rho_1: +\rho_2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ \end{bmatrix} \xrightarrow{\rho_2:+\rho_1} \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ \end{bmatrix} \xrightarrow{\rho_1: -\rho_2} $$ $$\begin{bmatrix} 0 & -1 \\ 1 & 2 \\ \end{bmatrix} \xrightarrow{\rho_2:+2\rho_1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ \end{bmatrix} \xrightarrow{\rho_1: \times(-1)} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ \end{bmatrix} $$ 所以 $$\begin{bmatrix} -1 & 0 \\ 0 & 1 \\ \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 2 & 1 \\ \end{bmatrix}\begin{bmatrix} 1 & -1 \\ 0 & 1 \\ \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ \end{bmatrix}\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix}= \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ \end{bmatrix}=A. $$ :::warning - [x] 經由列運算... 的最後一個矩陣寫錯 ::: ##### Exercise 5 列運算所對應到的基本矩陣會乘在左邊, 而行運算所對應到的基本矩陣會乘在右邊。 (參考 113-6。) 令 $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}. $$ 找出一些基本矩陣 $E_1,\ldots, E_k$ 使得 $E_k\cdots E_1 A E_1\trans\cdots E_k\trans = I_4$。 $Ans:$ :::warning - [ ] 加一些說明文字。標點、句子要完整。 - [x] $K$ --> $k$ ::: 做矩陣的行列運算,使其接近單位矩陣。 $E_1A E_1\trans=\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 2 & 0 \\ 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$ $E_1=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$. $E_2E_1A E_1\trans E_2\trans=\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$ $E_2=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. $E_3E_2E_1A E_1\trans E_2\trans E_3\trans =\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$ $E_3=\begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. $k=3$。 $$E_1=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}, E_2=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},E_3=\begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}. $$ **[由李昌諺同學提供]** ##### Exercise 5 列運算所對應到的基本矩陣會乘在左邊, 而行運算所對應到的基本矩陣會乘在右邊。 (參考 113-6。) 令 $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}. $$ 找出一些基本矩陣 $E_1,\ldots, E_k$ 使得 $E_k\cdots E_1 A E_1\trans\cdots E_k\trans = I_4$。 答: 將 $A$ 列運算 $$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}\xrightarrow{\rho_2: -1\rho_1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix} \xrightarrow{\rho_3:-1\rho_1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 \\ 1 & 2 & 3 & 4 \end{bmatrix} \xrightarrow{\rho_4: -1\rho_1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 1 & 2 & 3 \end{bmatrix} $$ $$\xrightarrow{\rho_3:-1\rho_2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix} \xrightarrow{\rho_4: -1\rho_2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{\rho_4: -1\rho_3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}. $$ 再用行運算 $$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}\xrightarrow{\kappa_2: -1\kappa_1} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\kappa_3: -1\kappa_1} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\kappa_4: -1\kappa_1} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} $$ $$\xrightarrow{\kappa_3: -1\kappa_2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\kappa_4: -1\kappa_2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\kappa_4: -1\kappa_3} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}. $$ 可求出 $E_1,\ldots, E_k$ 為 $$E_1=\begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{bmatrix}, E_2=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{bmatrix}, E_3=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1\end{bmatrix}.$$ $$E_4=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{bmatrix}, E_5=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1\end{bmatrix}, E_6=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1\end{bmatrix}. $$ **[由廖緯程同學提供]** 令 $R_i$ 為第 $i$ 列,$C_i$ 為第 $i$ 行。 先做列運算 $$ R_2:=+(-1)R_1\\R_3:=+(-1)R_1\\R_4:=+(-1)R_1 $$ ,以及對應的行運算 $$ C_2:=+(-1)C_1\\ C_3:=+(-1)C_1\\ C_4:=+(-1)C_1 $$ ,他們對應的基本矩陣分別為 $$ \begin{aligned} E_1 &= \begin{bmatrix} 1 & 0 & 0 & 0\\ -1 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ -1 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ -1 & 0 & 0 & 1 \end{bmatrix},\\ E_1\trans &= \begin{bmatrix} 1 & -1 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}, E_2\trans = \begin{bmatrix} 1 & 0 & -1 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}, E_3\trans = \begin{bmatrix} 1 & 0 & 0 & -1\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}, \end{aligned} $$ $A$ 做完這六個運算後為 $$ E_3E_2E_1AE_1\trans E_2\trans E_3\trans = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 1 & 1\\ 0 & 1 & 2 & 2\\ 0 & 1 & 2 & 3 \end{bmatrix}. $$ 接下來做列運算 $$ R_3:=+(-1)R_2\\R_4:=+(-1)R_2 $$ 以及他們對應到的行運算 $$ C_3:=+(-1)C_2\\C_4:=+(-1)C_2 $$ 這四個運算對應的基本矩陣分別為 $$ E_4 = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & -1 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}, E_5 = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & -1 & 0 & 1 \end{bmatrix},\\ E_4\trans = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & -1 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}, E_5\trans = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & -1\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}, $$ $A$ 做完十個運算後為 $$ E_5E_4E_3E_2E_1AE_1\trans E_2\trans E_3\trans E_4\trans E_5\trans = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 1\\ 0 & 0 & 1 & 2 \end{bmatrix}. $$ 最後做列運算 $$ R_4:=+(-1)R_3 $$ 及對應的行運算 $$ C_4:=+(-1)C_3 $$ 他們對應到的基本矩陣分別為 $$ E_6 = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & -1 & 1 \end{bmatrix}, E_6\trans = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1 \end{bmatrix} $$ $A$ 做完十二個運算後為 $$ E_6E_5E_4E_3E_2E_1AE_1\trans E_2\trans E_3\trans E_4\trans E_5\trans E_6\trans = I_4 = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}. $$ 因為這十二個運算都是將某列(行)乘上常數加到另一列(行)上,所以 $\det(A) = \det(I_4) = 1$ **[由汪駿佑同學提供]** 我們先找到 $$ E_1=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}, E_1\trans=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix} $$ 這個基本矩陣。 當我們把它擺成如 $E_1 A E_1\trans$ 時,$E_1$ 的意思是對 $A$ 的列作列運算:$\rho_4:+(-1)\rho_3$, 而 $E_1\trans$ 的意思是對 $A$ 的行作行運算:$\kappa_4:+(-1)\kappa_3$。 當我們做完運算後會得到: $$ E_1A E_1\trans=\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 2 & 0 \\ 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}. $$ 同理我們也可以找到 $$ E_2=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, E_2=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, $$ 使得 $$ E_2 (E_1 A E_1\trans) E_2\trans=\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, $$ 以及 $$ E_3=\begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, E_3\trans=\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, $$ 使得 $$ E_3 (E_2 E_1 A E_1\trans E_2\trans) E_3\trans =\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}. $$ 因此我們找出了 $$E_1=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}, E_2=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},E_3=\begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$ 使得 $$ E_3 E_2 E_1 A E_1\trans E_2\trans E_3\trans =\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = I_4. $$ :::info 分數 = 6 ± 檢討 = 6.5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully