Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 維度、擴充與縮限法則 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). {%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} ```python from lingeo import random_int_list, random_good_matrix, find_pivots ``` ## Main idea An important consequence of the basis exchange lemma is: If $V$ has a finite basis $\beta$, then every linearly independent set $\alpha$ in $V$ is finite and $|\alpha|\leq |\beta|$. Suppose $V$ has two finite bases $\alpha$ and $\beta$. Then we have $|\beta|\leq |\alpha|$ and $|\alpha|\leq|\beta|$, so $|\alpha| = |\beta|$. Therefore, if $V$ has a finite basis, then every basis of $V$ has the same size. We define the **dimension** of $V$ as the size of a basis of $V$, denoted as $\dim(V)$. Starting with a linearly independent set, one may keep adding vectors not in the span until it becomes a basis. The only unfortunate case is the unintuitive possibilty when adding new vectors never reaches to a spanning set but results in a linearly independent set of infinitely many vectors. However, the basis exchange lemma excludes this possibility! ##### Expanding lemma Let $V$ be a subspace contained in another subspace $U$. Suppose $U$ is has a finite basis. Let $\alpha$ be a linearly independent set in $V$. Then there is a finite basis $\beta$ of $V$ with $\alpha\subseteq\beta$. In particular, every subspace in $\mathbb{R}^n$ has a finite basis. On the other hand, one may start with a spanning set and keep removing redundant vectors. (We have seen this before, but let's formally write it down as below.) ##### Shrinking lemma Let $V = \operatorname{span}(S)$ be a subspace and $S$ a finite set of vectors. Then there is a basis $\beta$ of $V$ with $\beta\subseteq S$ ## Side stories - common subspaces - intersection and sum of two subspaces ## Experiments ##### Exercise 1 執行下方程式碼。 令 $S = \{ {\bf u}_1, \ldots, {\bf u}_5 \}$ 為 $A$ 的各行向量 且 $V = \operatorname{span}(S)$。 已知 ${\bf a}\in V$、 $R$ 為 $A$ 的最簡階梯形式矩陣、 $\left[\begin{array}{c|c} {\bf e}_1 & R' \end{array}\right]$ 為 $\left[\begin{array}{c|c} {\bf a} & A \end{array}\right]$ 的最簡階梯形式矩陣。 ```python ### code set_random_seed(0) print_ans = False m,n,r = 4,5,3 A, R, A_pivots = random_good_matrix(m,n,r, return_answer=True) a = A * vector(random_int_list(5)) aA = matrix(a).transpose().augment(A, subdivide=True) aR = aA.rref() aA_pivots = find_pivots(aR) print("A =") show(A) print("a =", a) print("R =") show(R) print("[ e1 | R' ] =") show(aR) if print_ans: print("{ a, " + ", ".join("u%i"%(i) for i in aA_pivots[1:]) + " } is a basis of V containing a.") print("{ " + ", ".join("u%i"%(i+1) for i in A_pivots) + " } is a basis of V contained in S.") ``` ##### Exercise 1(a) 求一組 $V$ 的基底 $\beta$ 且 ${\bf a}\in \beta$。 :::warning - [x] $\ba$=(-177,701,3324,-6482) --> $\ba =(-177,701,3324,-6482)$ - [x] 所以 $\beta$ 相當於 $\left[\begin{array}{c|c} {\bf a} & A \end{array}\right]$ 對應到軸的向量所組成。 $$ \beta = \begin{bmatrix} -177 & 1 & -3\\ 701 & -4 & 13\\ 3324 & -19&61\\ -6482 & 37&-119 \end{bmatrix}. $$ --> 所以 $\beta$ 可以取為 $$ \begin{bmatrix} -177 & 1 & -3\\ 701 & -4 & 13\\ 3324 & -19&61\\ -6482 & 37&-119 \end{bmatrix} $$ 的行向量,其中第一行為 $\ba$。 ::: 當 `set_random_seed(0)` 時,會有以下數字 $$ A = \begin{bmatrix} 1 & -3 & 3 & 18 & 29 \\ -4 & 13&-8&-77&-109 \\ -19&61&-40&-362&-520 \\ 37&-119&-78&706&1014 \\ \end{bmatrix}. $$ $\ba =(-177,701,3324,-6482)$ $$ R=\begin{bmatrix} 1&0&0&3&5 \\ 0&1&0&-5&-5 \\ 0&0&1&0&3 \\ 0&0&0&0&0 \\ \end{bmatrix}. $$ $$\left[\begin{array}{c|c} {\bf e}_1 & R' \end{array}\right]= \left[\begin{array}{c|ccccc} 1 & 0 & 0 & \frac{-1}{11} & 0 & \frac{-3}{-11} \\ 0 & 1 & 0 & -3 & 3 & -4 \\ 0 & 0 & 1 & \frac{37}{11} & -5 & \frac{56}{11} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}\right]. $$ 其中 $\left[\begin{array}{c|c} {\bf e}_1 & R' \end{array}\right]$ 為 $\left[\begin{array}{c|c} {\bf a} & A \end{array}\right]$ 的最簡階梯形式矩陣。 而我們發現 $\left[\begin{array}{c|c} {\bf e}_1 & R' \end{array}\right]$ 的前三行對應到軸, 因此我們可知 $\left[\begin{array}{c|c} {\bf a} & A \end{array}\right]$ 剛好也對應到軸。 所以 $\beta$ 可以取為 $$ \begin{bmatrix} -177 & 1 & -3\\ 701 & -4 & 13\\ 3324 & -19&61\\ -6482 & 37&-119 \end{bmatrix} $$ 的行向量,其中第一行為 $\ba$。 ##### Exercise 1(b) 求一組 $V$ 的基底 $\beta$ 且 $\beta\subseteq S$。 $Ans:$ 若將 $A$ 進行列運算得到其最簡階梯形的矩陣 $R$ 。 $$ R=\begin{bmatrix} 1&0&0&3&5 \\ 0&1&0&-5&-5 \\ 0&0&1&0&3 \\ 0&0&0&0&0 \\ \end{bmatrix}. $$ 由此矩陣可知 $R$ 的前三行為軸,換句話說, $A$ 的前三行也為軸。 故若令 $\beta$ 為 $A$ 的前三行向量, $\beta$ 為 $\Col(A)$ 的基底。 而 $A$ 的各行向量為 $S$ 中的向量,換句話說 $\beta$ 也是 $V$ 的基底,且 $\beta\subseteq S$。 ## Exercises ##### Exercise 2(a) 求 $$V = \operatorname{span}\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 9 \end{bmatrix} \right\} $$ 的維度。 :::warning - [x] 由矩陣 $R$ 可以得到 $A$ 的軸 $pivot=3$, --> 由矩陣 $R$ 可以得到 $A$ 的軸數為 $3$, - [x] $dim$ --> $\dim$ ::: $Ans:$ 令 $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix}$ 將 $A$ 經列運算後得到 $A$ 的最簡階梯型矩陣 $R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$ 由矩陣 $R$ 可以得到 $A$ 的軸數為 $3$, 故 $V$ 的維度 $\dim(V)=3$。 ##### Exercise 2(b) 求 $$V = \operatorname{span}\left\{ \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right\} $$ 的維度。 :::warning - [x] 最簡階梯形式 --> 階梯形式(你們的 $R$ 沒有消到最簡) - [x] $dim$ --> $\dim$ ::: $Ans:$ 令 $$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & 1 \end{bmatrix}$$ 將 $A$ 經過列運算後可得 $A$ 的最簡階梯形式為 $$R =\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$ 由矩陣 $R$ 可得 $A$ 有兩個軸, 故 $V$ 的維度 $\dim(V)=2$。 ##### Exercise 2(c) 令 $$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ \end{bmatrix} $$ 求 $$V = \{ {\bf x}\in\mathbb{R}^4 : A{\bf x} = {\bf 0}\} $$ 的維度。 :::warning - [x] 這題是問 $\ker(A)$ 的維度 - [x] 由矩陣 $R$ 得知矩陣 $A$ 軸的個數 $pivot = 2$, --> 由矩陣 $R$ 得知矩陣 $A$ 軸的個數為 $2$, - [x] 故維度 $\dim(V) = 2$。 --> 故維度 $\dim(V) = \dim(\ker(A)) = ...$,也就是自由變數的個數。 ::: $Ans:$ 將矩陣 $A$ 化簡為最簡階梯形式,得: $$R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ \end{bmatrix}. $$ 由矩陣 $R$ 得知矩陣 $A$ 軸的個數為 $2$, 故維度 $\dim(V) = \dim(\ker(A)) = 4 - 2 = 2$,也就是自由變數的個數。 ##### Exercise 2(d) 令 $$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 \\ 2 & 2 & 1 & 1 \\ \end{bmatrix}.$$ 求 $$V = \{ {\bf x}\in\mathbb{R}^4 : A{\bf x} = {\bf 0}\} $$ 的維度。 :::warning - [ ] 照上一題改 ::: $Ans:$ 將 $A$ 矩陣化簡為最簡階梯式 $$R = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 &0 & 0 \\ \end{bmatrix}. $$ $R$ 的軸數為 $2$, 因此 $A$ 矩陣的維度 $\dim(A)=2$。 故維度 $\dim(V) = \dim(\ker(A)) = 4 - 2 = 2$,也就是自由變數的個數。 ##### Exercise 3 令 $U = \{ {\bf x} = (x,y,z,w)\in\mathbb{R}^4 : x + y + z + w = 0 \}$ 且 $V = \{ {\bf x} = (x,y,z,w)\in\mathbb{R}^4 : x + y + 2z + 2w = 0 \}$。 求出 ${\bf u}_1, \ldots, {\bf u}_4$ 使得 $\{ {\bf u}_1,{\bf u}_2 \}$ 是 $U\cap V$ 的一組基底、 $\{ {\bf u}_1,{\bf u}_2,{\bf u}_3 \}$ 是 $U$ 的一組基底、 $\{ {\bf u}_1,{\bf u}_2,{\bf u}_4 \}$ 是 $V$ 的一組基底。 :::warning - [x] $u_1$, $u_2$ --> $\bu_1$, $\bu_2$(其它向量也要粗體) - [x] $\bu_3$ 和 $\bu_4$ 的找法沒有很明確說明為什麼 $\{\bu_1,\bu_2,\bu_3\}$ 是 $U$ 的一組基底。建議以下的寫法: 空間 $U$ 可以看成是矩陣 $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ 的核。經過計算 $\beta_K$ 可以知道 $U = \Col(A_U)$,其中 $$A_U =\begin{bmatrix} -1&-1&-1 \\ 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{bmatrix}. $$ 將增廣矩陣 $$ \left[\begin{array}{cc|c} \bu_1 & \bu_2 & A_U \end{array}\right] $$ 化簡為最簡階梯形式 $$ \left[\begin{array}{cc|c} ? & ? & ? \end{array}\right] $$ 並知道 $\{\bu_1,\bu_2,\bu_3\}$ 為 $$ \left[\begin{array}{cc|c} \bu_1 & \bu_2 & A_U \end{array}\right] = \Col(A_U) = U $$ 的一組基底,其中 $\bu_3$ 為 $A_U$ 的第 ? 行。 ::: $Ans:$ 由定義可知 $U\cap V$ 包含了所有滿足 $$ \begin{cases} x&+ y&+ z&+ w&= 0,\\ x&+ y&+ 2z&+ 2w&= 0. \end{cases} $$ 的向量 $\bx = (x,y,z,w)$。 將方程式化簡可得 $$ \begin{cases} x&+ y& & &= 0,\\ & & z&+ w&= 0. \end{cases} $$ 令 $y = a, w = b$ , $a,b\in\mathbb{Z}$, 則 $$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}= \begin{bmatrix} -a \\ a \\ -b \\ b \end{bmatrix}= \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}a + \begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \end{bmatrix}b. $$ 取 $\bu_1 =\begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\bu_2 =\begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \end{bmatrix},$ 得 $\{ {\bf u}_1,{\bf u}_2 \}$ 是 $U\cap V$ 的一組基底。 空間 $U$ 可以看成是矩陣 $\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$ 的核。 經過計算 $\beta_K$ 可以知道 $U = \Col(A_U)$,其中 $$A_U =\begin{bmatrix} -1&-1&-1 \\ 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{bmatrix}. $$ 將增廣矩陣 $$ \left[\begin{array}{cc|c} \bu_1 & \bu_2 & A_U \end{array}\right] $$ 化簡為最簡階梯形式 $$ \left[\begin{array}{cc|ccc} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right] $$ 並知道 $\{\bu_1,\bu_2,\bu_3\}$ 為 $$ \left[\begin{array}{cc|c} \bu_1 & \bu_2 & A_U \end{array}\right] = \Col(A_U) = U $$ 的一組基底,其中 $\bu_3$ 為 $A_U$ 的第 2 行。 空間 $V$ 可以看成是矩陣 $\begin{bmatrix} 1 & 1 & 2 & 2 \end{bmatrix}$ 的核。 經過計算 $\beta_K$ 可以知道 $V = \Col(A_V)$,其中 $$A_V =\begin{bmatrix} -1&-2&-2 \\ 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{bmatrix}. $$ 將增廣矩陣 $$ \left[\begin{array}{cc|c} \bu_1 & \bu_2 & A_V \end{array}\right] $$ 化簡為最簡階梯形式 $$ \left[\begin{array}{cc|ccc} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right] $$ 並知道 $\{\bu_1,\bu_2,\bu_4\}$ 為 $$ \left[\begin{array}{cc|c} \bu_1 & \bu_2 & A_V \end{array}\right] = \Col(A_V) = V $$ 的一組基底,其中 $\bu_4$ 為 $A_V$ 的第 $2$ 行。 <!-- 設 $U$ 有 $\ker(U) =\begin{bmatrix} -1&-1&-1 \\ 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{bmatrix}$, $\bu_2=-1\begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}+1\begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$,$\bu_3$ 可為 $\begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$。 設 $V$ 有 $ker(V) =\begin{bmatrix} -1&-2&-2 \\ 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{bmatrix}$, $\bu_2=-1\begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}+1\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$,$\bu_4$ 可為 $\begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$。 故 $\bu_1 =\begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\bu_2 =\begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \end{bmatrix},$ $\bu_3 =\begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\bu_4 =\begin{bmatrix} -2 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$ --> ##### Exercise 4 令 $$A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 2 & 1 \\ 2 & 1 \\ \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 2 \\ 2 & 1 \\ \end{bmatrix}. $$ 求 $\operatorname{span}(\operatorname{Col}(A) \cup \operatorname{Col}(B))$ 的一組基底。 <!-- $Ans:$ 矩陣 $A$ 經過列運算後可得 $$R = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ \end{bmatrix}.$$ 而矩陣 $B$ 經過列運算後可得 $$S = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$ 由於矩陣 $R$ 中的第二列和第三列互換後可得與 $S$ 相同的結果, 因此 $\Col(A) \cup\ \Col(B)$ 可以表示為 $$T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$ 因此行空間的基底$\beta_c$即為所求之基底 $$ \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}.$$ --> :::warning - [x] 向量粗體 - [x] 由矩陣 $C'$ 的軸位於 $x_1,x_2,x_3$ 得知 --> 由矩陣 $C'$ 的軸位於 $1, 2, 3$ 得知 - [x] $$\beta_C = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix}. $$ --> $$\beta_C = \left\{ \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \end{bmatrix} \right\}. $$ ::: $Ans:$ 令 $$\bu_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}、 \bu_2 = \begin{bmatrix} 2 \\ 2 \\ 1 \\ 1 \end{bmatrix}、 \bu_3 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \end{bmatrix}、 \bu_4 = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 1 \end{bmatrix}, $$ 則 $\operatorname{span}(\operatorname{Col}(A) \cup \operatorname{Col}(B))$ = $\operatorname{span}(\{ {\bf u}_1 , {\bf u}_2 , {\bf u}_3, {\bf u}_4\})$, 令矩陣 $$C = \begin{bmatrix} 1 & 2 & 1 & 2\\ 1 & 2 & 2 & 1\\ 2 & 1 & 1 & 2\\ 2 & 1 & 2 & 1 \end{bmatrix}.$$ 將其化簡為最簡階梯形式為 $$C' = \begin{bmatrix} 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 0 \end{bmatrix}.$$ 由矩陣 $C'$ 的軸位於 $1, 2, 3$ 得知, $\operatorname{span}(\operatorname{Col}(A) \cup \operatorname{Col}(B))$ 的一組基底可為 $$\beta_C = \left\{ \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \end{bmatrix} \right\}. $$ ##### Exercise 5 證明 expanding lemma。 <!-- $Ans:$ 已知集合 $V$ 有一組獨立的集合 $\alpha$ 且存在 $\beta$ 為完整基底 若 $\ker(\beta)$ 未完全滿足 $\ker(\alpha)$ 則將 $\alpha$ 加上一向量集合等於 $\alpha'$為 $V$ 之基底 則 $\ker(\beta)≥\ker(\alpha')$ $,$ $\ker(\beta)≤\ker(\alpha')$ $,$$\ker(\beta)=\ker(\alpha')$ $\alpha⊂\beta$ 若 $\ker(\beta)=\ker(\alpha)$ 則 $\alpha$ 即為 $V$ 的基底 $\alpha'=\beta$ 因此 $\alpha⊆\beta$ --> :::warning - [x] 取 $\beta'$ 與 $\beta$ 交集之集合 $S$, 得 $\{ {\bf \alpha} , {\bf S} \} = \{ {\bf \beta'} \}$, --> 且 $\alpha\subseteq\beta'$。 ::: $Ans:$ 已知集合 $V$ 存在一組 $\beta$ 為有限基底。 令 $\alpha$ 為線性獨立的集合, 根據基底交換法則, 若將 $\beta$ 中部分向量集合用 $\alpha$ 取代得到 $\beta'$, 則 $\beta'$ 仍為集合 $V$ 的一組有限基底, 且 $\alpha\subseteq\beta'$。 故 expanding lemma 得證。 ##### Exercise 6 利用 expanding lemma 證明所有 $\mathbb{R}^n$ 中的子空間都有一組有限個數的基底。 :::warning 令 $V$ 為一 $\mathbb{R}^n$ 中的子空間。 若 $\alpha$ 為 $V$ 中的一線性獨立集, 則 $\alpha$ 同時也是 ??? 的一線性獨立集。 根據 expanding lemma,$\alpha$ 可以擴展成一組 $\mathbb{R}^n$ 的基底,其大小為 $n$,因此 $\alpha$ 的個數有限。 由於這個論證對所有 $V$ 中的獨立集都對,所以 $V$ 中的獨立集個數都是有限個,且個數不超過 ?。 取一個 $V$ 中個數最多的獨立集 $\beta$。 若 $V \neq \vspan(\beta)$,則存在 $\bv$ 落在 ??? 中。 因此 $\beta \cup \{\bv\}$ 是 $V$ 中一個更大的獨立集,這和 $\beta$ 的個數最多的假設相矛盾。 所以 ???。 也就是 ??? 為 $V$ 的一組基底。 ::: $Ans:$ 令 $V$ 為一 $\mathbb{R}^n$ 中的子空間。 若 $\alpha$ 為 $V$ 中的一線性獨立集, 則 $\alpha$ 同時也是 $\mathbb{R}^n$ 的一線性獨立集。 根據 expanding lemma,$\alpha$ 可以擴展成一組 $\mathbb{R}^n$ 的基底,其大小為 $n$,因此 $\alpha$ 的個數有限。 由於這個論證對所有 $V$ 中的獨立集都對,所以 $V$ 中的獨立集個數都是有限個,且個數不超過 $n$。 取一個 $V$ 中個數最多的獨立集 $\beta$。 若 $V \neq \vspan(\beta)$,則存在 $\bv$ 落在 $V \setminus \vspan(\beta)$ 中。 因此 $\beta \cup \{\bv\}$ 是 $V$ 中一個更大的獨立集,這和 $\beta$ 的個數最多的假設相矛盾。 所以 $V = \vspan(\beta)$。 也就是 $\beta$ 為 $V$ 的一組基底。 :::success 目前分數: 5.5 分 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully