Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 零解 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). {%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} ```python from lingeo import random_good_matrix, betak_solver ``` ## Main idea Let $A$ be an $m\times n$ matrix and ${\bf b}$ a vector in $\mathbb{R}^n$. Recall that the homogeneous solutions are the solutions to $A{\bf x} = {\bf 0}$, which is irrelavent to ${\bf b}$. That is, the homogeneous solutions form the set $\operatorname{ker}(A)$. Let $R$ be the reduced echelon form of $A$. Suppose $x_{i_1},\ldots, x_{i_k}$ are the free variables. For each $s = 1,\ldots, k$, we obtained ${\bf h}_s$ as follows: 1. Set $x_{i_s} = 1$ and the remaining free variables as $0$. 2. Under this settting, solve $A{\bf x} = {\bf 0}$ and call the solution ${\bf h}_s$. Then $\operatorname{ker}(A) = \operatorname{span}(\{{\bf h}_1,\ldots,{\bf h}_k\})$. Since the set of solutions to $A{\bf x} = {\bf b}$ is ${\bf p} + \operatorname{ker}(A)$ for some particular solution ${\bf p}$, $$\{ {\bf x}\in\mathbb{R}^n : A{\bf x} = {\bf b} \} = \{ {\bf p} + c_1{\bf h}_1 + \cdots + c_k{\bf h}_k : c_1,\ldots,c_k\in\mathbb{R} \}. $$ Suppose ${\bf b}\in\operatorname{ker}(A)$. The following are equivalent: 1. $A{\bf x} = {\bf b}$ has a unique solution. 2. The reduced echelon form of $A$ has no free variable. 3. The reduced echelon form of $A$ has $n$ pivots. 4. $\operatorname{ker}(A) = \{{\bf 0}\}$. Since $A{\bf x} = {\bf 0}$ always has a trivial solution $A{\bf 0} = {\bf 0}$, , the followin are equivalent: 1. ${\bf 0}$ is the only solution to $A{\bf x} = {\bf 0}$. 2. The reduced echelon form of $A$ has no free variable. 3. The reduced echelon form of $A$ has $n$ pivots. 4. $\operatorname{ker}(A) = \{{\bf 0}\}$. ## Side stories - unique representation - polynomial passing through given points ## Experiments ##### Exercise 1 執行下方程式碼。 矩陣 $R$ 是 $A$ 的最簡階梯形式矩陣。 利用 Main idea 中說明的方法找出 $\{{\bf h}_1,\ldots,{\bf h}_k\}$。 ```python ### code set_random_seed(0) print_ans = False A, R, pivots = random_good_matrix(3,5,2, return_answer=True) print("A =") show(A) print("R =") show(R) if print_ans: free = [i for i in range(5) if i not in pivots] print("Free variables are xi with i =", free) for i in range(len(free)): hi = betak_solver(R, free, i+1) print("h%s ="%(i+1), vector(hi)) ``` :::warning - [x] $x_3,x_4,x_5$ 的值有寫錯 - [x] ${\bf h_1}$ --> $\bh_1$ 數字不要粗體 ::: $Ans:$ 題目給定 `seed=0`、 $$A =\begin{bmatrix} 1 & -3 & 18 & 5 & -14 \\ 3 & -8 & 49 & 15 & -39 \\ -8 & 20 & -120 & -40 & 1000 \end{bmatrix} $$ 以及 $$R = \begin{bmatrix} 1 & 0 & 3 & 5 & -5 \\ 0 & 1 & -5 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}. $$ $R$ 為 $A$ 的最簡階梯形式矩陣。 由 $R$ 可知 $x_1 , x_2$ 為領導變數 , $x_3 , x_4 , x_5$ 則為自由變數。 令 $x_3=1 , x_4=0 , x_5=0$ 時可得到 $$\bh_1 = (-3,5,1,0,0)。 $$ 令 $x_4=1 , x_3=0 , x_5=0$ 時可得到 $$\bh_2 = (-5,0,0,1,0)。 $$ 令 $x_5=1 , x_3=0 , x_4=0$ 時可得到 $$\bh_3= (5,-3,0,0,1)。$$ ## Exercises ##### Exercise 2 令 $A$ 為一 $m\times n$ 矩陣而 $R$ 為其最簡階梯形式矩陣。 考慮方程式 $A{\bf x} = {\bf 0}$。 若 $R$ 有 $r$ 個軸﹐則可以算出 $\operatorname{ker}(A)$ 的生成集 $S = \{{\bf h}_1,\ldots,{\bf h}_{n-r}\}$。 令 $H$ 為一 $n\times (n-r)$ 矩陣其和行向量依序為 $S$ 中的各向量。 可以執行以下程式碼看例子。 ```python ### code set_random_seed(0) A, R, pivots = random_good_matrix(5,7,4,return_answer=True) free = [i for i in range(7) if i not in pivots] H = zero_matrix(QQ, 7, 3) for i in range(3): H[:,i] = betak_solver(R, free, i+1) print("A =") show(A) print("R =") show(R) print("H =") show(H) ``` 藉由 `seed = 0` 得到 $$A = \begin{bmatrix} 1 & -4 & -3 & 32 & -4 & -29 & 4 \\ -3 & 13 & 11 &-107 & 18 & 98 & -16 \\ 6 & -27 & -23 & 222 & -39 & -203 & 35\\4 & -20 & -18& 166 & -34& -154 & 31\\-10 & 39 & 30 & -315 & 40 & 287 & -37\end{bmatrix}, $$ $$R = \begin{bmatrix} 1 & 0 & 0 & 3 & 5 & -5 & 0 \\ 0 & 1 & 0 &-5 & 0 & 3 & 0 \\ 0 & 0 & 1 & -3 & 3 & 4 & 0\\0 & 0 & 0& 0 & 0& 0 & 1\\0 & 0& 0 & 0 & 0 & 0 & 0\end{bmatrix}, $$ $$H = \begin{bmatrix} -3 & -5 & 5 \\ 5 & 0 & -3 \\ 3& -3 & -4 \\1 & 0 & 0\\ 0 & 1& 0 \\0& 0& 1 \\ 0 & 0 & 0 \end{bmatrix}. $$ ##### Exercise 2(a) 把 $R$ 中的前 $r$ 列取出來 (也就是那些非零的列向量)、 再從中把對應到領導變數的那些行向量拿出來﹐ 組成一個 $r\times r$ 矩陣。 這個矩陣長什麼樣子?說明為什麼? $Ans:$ 首先,把 $R$ 中的前 $r$ 列取出來,得到 $$\begin{bmatrix} 1 & 0 & 0 & 3 & 5 & -5 & 0 \\ 0 & 1 & 0 &-5 & 0 & 3 & 0 \\ 0 & 0 & 1 & -3 & 3 & 4 & 0\\0 & 0 & 0& 0 & 0& 0 & 1\end{bmatrix}. $$ 其次,從中把對應到領導變數的那些行向量列舉出來 $${\bf n}_1 = \begin{bmatrix} 1\\0\\0\\0\end{bmatrix} , {\bf n}_2 = \begin{bmatrix} 0\\1\\0\\0\end{bmatrix} , {\bf n}_3 = \begin{bmatrix} 0\\0\\1\\0\end{bmatrix} , {\bf n}_7 = \begin{bmatrix} 0\\0\\0\\1\end{bmatrix} , $$ 再將這些行向列組成一個 $r\times r$ 矩陣,得到 $$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\\0 & 0 & 0& 1\end{bmatrix}. $$ 因為 $R$ 為最簡階梯形式矩陣,所以滿足以下條件: 1. 所有非零列在所有全零列上面。 2. 非零列最左的非零元素(即軸元),嚴格地比上一列的軸元更靠右。 3. 非零列的軸元等於 $1$ ,且是其所在行的唯一非零元素。 根據以上性質,取非零列的軸元所在的行向量組成的 $r\times r$ 矩陣,就是單位矩陣。 ##### Exercise 2(b) 把 $H$ 對應到自由變數的那些列向量拿出來﹐ 組成一個 $(n-r)\times (n-r)$ 矩陣。 這個矩陣長什麼樣子?說明為什麼? :::warning 可能題目沒講清楚,因為 $H$ 的每一個列都對應到原本的 $x_1$ ~ $x_7$,所以這裡說的 "自由變數" 指的是 $R$ 上的自由變數 $x_4,x_5,x_6$,所以把 $H$ 中對應到 $x_4,x_5,x_6$ 的列拿出來,看看會得到什麼。(你們目前的答案是拿 $R$ 的行) ::: $Ans:$ 首先,把 $H$ 對應到自由變數的那些列向量拿出來: 因為領導變數位於 $x_1$,$x_2$,$x_3$,$x_7$,由此可知自由變數所在位置為 $x_4$~$x_6$ 可得: 而 $H$ 的第 $i$ 列都會對應到 $x_i$, 題目要的就是 $H$ 內的第 $4$~$6$ 列 (對應到 $x_4$~$x_6$ ) $${\bf h}_4 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} , {\bf h}_5 = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} , {\bf h}_6 = \begin{bmatrix} 0 & 0 & 1\end{bmatrix} $$ 組成一個 $(n-r)\times (n-r)$ 的矩陣。 所以這個矩陣就是: $${\bf I}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\\\end{bmatrix} $$ 而這個矩陣也就是單位矩陣,其中每列的第 $k$ 行元素就是表示第 $k$ 個自由變數設為 $1$ ,其他為 $0$。 故若有 $n$ 個自由變數,代表就會做 $n$ 次上述的動作,使得該矩陣就是個 $n\times n$ 的單位矩陣。 ##### Exercise 2(c) 把 $R$ 中的前 $r$ 列取出來 (也就是那些非零的列向量)、 再從中把對應到自由變數的那些行向量拿出來﹐ 組成一個 $r\times (n-r)$ 矩陣、稱作 $R'$。 另一方面,把 $H$ 中對應到領導變數的列向量拿出來﹐ 組成一個 $r\times (n-r)$ 矩陣、稱作 $H'$。 這兩個矩陣 $R'$ 和 $H'$ 有什麼關係?說明為什麼? :::warning Nice! - [x] ${\bf O_{r,n-r}}$ --> $O_{r,n-r}$ 向量才要粗體 - [x] 數學式後半型句點 ::: $Ans:$ $$R'=\begin{bmatrix} 3 & 5 & -5\\ -5 & 0 & 3\\ -3 & 3 & 4\\ 0 & 0 & 0 \end{bmatrix}, H'=\begin{bmatrix} -3 & -5 & 5\\ 5 & 0 & -3\\ 3 & -3 & -4\\ 0 & 0 & 0 \end{bmatrix},R'+H'=O_{r,n-r}. $$ 令 $R'$ 的第 $k$ 個列向量為 $(c_1,\ldots,c_{n-r})$ ,可以與所有自由變數組成的向量內積後加上第 $k$ 個領導變數會等於 $0$ 即 $$x_{l,k}+c_1\cdot x_{f,1}+\cdots+c_{n-r}\cdot x_{f,n-r}=0 $$ 其中 $x_{l,k}$ 為第 $k$ 個領導變數、而 $x_{f,i}$ 為第 $i$ 個自由變數。 令 $H'$ 的第 $k$ 個列向量為 $(x_{k,1},\dots x_{k,i},\dots x_{k,n-r})$, 其中 $x_{k,i}$ 即第 $i$ 個自由變數等於 $1$,其他自由變數等於 $0$ 時的第 $k$ 個領導變數, 結合 $R'$ 得 $x_{k,i}+c_i\cdot 1=0$ 因此 $H'$ 第 $k$ 個列向量可以看成 $(-c_1,\ldots,-c_{n-r})$ 得 $$R'+H'=O_{r,n-r}. $$ ##### Exercise 3 執行以下程式碼。 已知 ${\bf b}\in\operatorname{Col}(A)$。 驗證以下關於唯一解的問題。 ```python ### code set_random_seed(0) A = ran2dom_good_matrix(5,3,3) b = A * vector([1,1,1]) print("A =") show(A) print("b =", b) ``` 藉由 `seed = 0` 得到 $$A = \begin{bmatrix} 1 & 3 & 5 \\ -5& -14 & -30 \\ -15 & -42 & -89\\28 & 79 & 162\\ -13 & -37 & -73 \end{bmatrix}. $$ $$ b= ( 9,-49,-146,269,-123 ) $$ ##### Exercise 3(a) 說明 $A{\bf x} = {\bf b}$ 有唯一解。 $Ans:$ $$\left[\begin{array}{ccc|c} 1 & 3 & 5 & 9\\ -5 & -14 & -30 & -49\\ -15 & -42 & -89 & -146\\ 28 & 79 & 162 & 269\\ -13 & -37 & -73 & -123 \end{array}\right]$$ $$\xrightarrow[-28\rho_1+\rho_4,13\rho_1+\rho_5]{5\rho_1+\rho_2,15\rho_1+\rho_3}\left[\begin{array}{ccc|c} 1 & 3 & 5 & 9\\ 0 & 1 & -5 & -4\\ 0 & 3 & -14 & -11\\ 0 & -5 & 22 & 17\\ 0 & 2 & -8 & -6 \end{array}\right]$$ $$\xrightarrow[5\rho_2+\rho_4,-2\rho_2+\rho_5]{-3\rho_2+\rho_1,-3\rho_2+\rho_3}\left[\begin{array}{ccc|c} 1 & 0 & 20 & 21\\ 0 & 1 & -5 & -4\\ 0 & 0 & 1 & 1\\ 0 & 0 & -3 & -3\\ 0 & 0 & 2 & 2 \end{array}\right]$$ $$\xrightarrow[3\rho_3+\rho_4,-2\rho_3+\rho_5]{-20\rho_3+\rho_1,5\rho_3+\rho_2}\left[\begin{array}{ccc|c} 1 & 0 & 0 & 1\\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{array}\right]$$ 由最簡階梯形式矩陣得知, $x_1=x_2=x_3=1$,有唯一解。 ##### Exercise 3(b) 說明 $A{\bf x} = {\bf 0}$ 有唯一解。 $Ans:$ $$\left[\begin{array}{ccc|c} 1 & 3 & 5 & 0\\ -5 & -14 & -30 & 0\\ -15 & -42 & -89 & 0\\ 28 & 79 & 162 & 0\\ -13 & -37 & -73 & 0 \end{array}\right]$$ $$\xrightarrow[-28\rho_1+\rho_4,13\rho_1+\rho_5]{5\rho_1+\rho_2,15\rho_1+\rho_3}\left[\begin{array}{ccc|c} 1 & 3 & 5 & 0\\ 0 & 1 & -5 & 0\\ 0 & 3 & -14 & 0\\ 0 & -5 & 22 & 0\\ 0 & 2 & -8 & 0 \end{array}\right]$$ $$\xrightarrow[5\rho_2+\rho_4,-2\rho_2+\rho_5]{-3\rho_2+\rho_1,-3\rho_2+\rho_3}\left[\begin{array}{ccc|c} 1 & 0 & 20 & 0\\ 0 & 1 & -5 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & -3 & 0\\ 0 & 0 & 2 & 0 \end{array}\right]$$ $$\xrightarrow[3\rho_3+\rho_4,-2\rho_3+\rho_5]{-20\rho_3+\rho_1,5\rho_3+\rho_2}\left[\begin{array}{ccc|c} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{array}\right]=R$$ $x_1=x_2=x_3=0$ ,有解。 $A$ 是 $5\times 3$ 矩陣,且最簡階梯形式矩陣後的 $R$ 有 $3$ 個軸,沒有自由變數,所以 $\ker(A)=\{{\bf 0}\}$ , $A{\bf x} = {\bf 0}$ 有唯一解。 ##### Exercise 3(c) 若 $f(x) = c_0 + c_1 x + c_2 x^2$。 若 $f(1) = b_1$、 $f(2) = b_2$、 $f(3) = b_3$。 說明不論 $b_1$、$b_2$、$b_3$ 給的是多少﹐$c_0$、$c_1$、$c_2$ 都有唯一解。 $Ans:$ $$\begin{cases} c_0+c_1+c_2=b_1\\ c_0+2c_1+4c_2=b_2\\ c_0+3c_1+9c_2=b_3 \end{cases}$$ 可以看成 $$\left[\begin{array}{ccc|c} 1 & 1 & 1 & b_1\\ 1 & 2 & 4 & b_2\\ 1 & 3 & 9 & b_3 \end{array}\right]$$ 的解。 $$\xrightarrow[-\rho_1+\rho_3]{-\rho_1+\rho_2}\left[\begin{array}{ccc|c} 1 & 1 & 1 & b_1\\ 0 & 1 & 3 & -b_1+b_2\\ 0 & 2 & 8 & -b_1+b_3 \end{array}\right]$$ $$\xrightarrow[-2\rho_2+\rho_3]{-\rho_2+\rho_1}\left[\begin{array}{ccc|c} 1 & 0 & -2 & 2b_1-b_2\\ 0 & 1 & 3 & -b_1+b_2\\ 0 & 0 & 2 & -3b_1-2b_2+b_3 \end{array}\right]$$ $$\xrightarrow[]{\rho_3\times\frac{1}{2}}\left[\begin{array}{ccc|c} 1 & 0 & -2 & 2b_1-b_2\\ 0 & 1 & 3 & -b_1+b_2\\ 0 & 0 & 2 & -\frac{3}{2}b_1-b_2+\frac{1}{2}b_3 \end{array}\right] $$ $$\xrightarrow[-3\rho_3+\rho_2]{2\rho_3+\rho_1}\left[\begin{array}{ccc|c} 1 & 0 & 0 & -b_1-3b_2+b_3\\ 0 & 1 & 0 & \frac{7}{2}b_1+4b_2-\frac{3}{2}b_3\\ 0 & 0 & 1 & -\frac{3}{2}b_1-b_2+\frac{1}{2}b_3 \end{array}\right] $$ $$ c_0=-b_1-3b_2+b_3 $$ $$ c_1=\frac{7}{2}b_1+4b_2-\frac{3}{2}b_3 $$ $$ c_2=-\frac{3}{2}b_1-b_2+\frac{1}{2}b_3 $$ 所以不論 $b_1$、$b_2$、$b_3$ 給的是多少﹐$c_0$、$c_1$、$c_2$ 都有唯一解。 ##### Exercise 3(d) 若 $f(x) = c_0 + c_1 x + c_2 x^2$。 若 $x_1$、$x_2$、$x_3$ 為三相異實數且 $f(x_1) = b_1$、 $f(x_2) = b_2$、 $f(x_3) = b_3$。 說明不論 $b_1$、$b_2$、$b_3$ 給的是多少﹐$c_0$、$c_1$、$c_2$ 都有唯一解。 :::warning - [x] 因為 $x_1\neq x_2\neq x_3$ --> 因為 $x_1,x_2,x_3$ 彼此相異(原本的式子 $x_1\neq x_2\neq x_3$ 不是一個好的數學式,看起來也許 $x_1$ 可能和 $x_3$ 相等) - [x] 列運算可以把第二列同乘 $\frac{1}{-x_1+x_2}$ 之類的會比較好算;參考 109 4(c) ::: $Ans:$ $$\begin{cases} c_0+c_1x_1+c_2{x_1}^2=b_1\\ c_0+c_1x_2+c_2{x_2}^2=b_2\\ c_0+c_1x_3+c_2{x_3}^2=b_3 \end{cases}$$ 可以看成 $$\left[\begin{array}{ccc|c} 1 & x_1 & {x_1}^2 & b_1\\ 1 & x_2 & {x_2}^2 & b_2\\ 1 & x_3 & {x_3}^2 & b_3 \end{array}\right] $$ 的解。 因為 $x_1,x_2,x_3$ 彼此相異,所以可以有以下運算: $$\left[\begin{array}{ccc|c} 1 & x_1 & {x_1}^2 & b_1\\ 1 & x_2 & {x_2}^2 & b_2\\ 1 & x_3 & {x_3}^2 & b_3 \end{array}\right]$$ $$\xrightarrow[-\rho_1+\rho_3]{-\rho_1+\rho_2}\begin{bmatrix} 1 & x_1 & {x_1}^2\\ 0 & -x_1+x_2 & -{x_1}^2+{x_2}^2 &\\ 0 & -x_1+x_3 & -{x_1}^2+{x_3}^2 \end{bmatrix}$$ $$\xrightarrow[\rho_3\times \frac{1}{-x_1+x_3}]{\rho_2\times \frac{1}{-x_1+x_2}}\begin{bmatrix} 1 & x_1 & {x_1}^2\\ 0 & 1 & x_1+x_2\\ 0 & 1 & x_1+x_3 \end{bmatrix}$$ $$\xrightarrow[-\rho_2+\rho_3]{\rho_2\times (-x_1)+\rho_1}\begin{bmatrix} 1 & 0 & -x_1x_2\\ 0 & 1 & x_1+x_2\\ 0 & 0 & -x_2+x_3 \end{bmatrix}$$ $$\xrightarrow[]{\rho_3\times \frac{1}{-x_2+x_3}}\begin{bmatrix} 1 & 0 & -x_1x_2\\ 0 & 1 & x_1+x_2\\ 0 & 0 & 1 \end{bmatrix}$$ $$\xrightarrow[\rho_3\times (-x_1-x_2)]{\rho_3\times(x_1x_2)+\rho_1}\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$ 由運算結果得到最簡階梯形式矩陣,則可知道只有唯一解。 :::info 答案清晰乾淨:) 除了 2(b) 以外數學都沒問題 只有格式要改 目前分數 6/5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully