Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 薛爾上三角化 Schur triangulation ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$ ```python from lingeo import random_int_list, random_good_matrix ``` ## Main idea Recall that an $n\times n$ matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ is called upper triangular if $a_{ij} = 0$ for all $i > j$. ##### Schur triangulation theorem Let $A$ be a square complex matrix. Then there is a unitary matrix $Q$ such that $Q^*AQ = T$ is a upper triangular matrix. Necessarily, the diagonal entries of $T$ are the eigenvalues of $A$. Note that if $A$ is a real matrix with complex eigenvalues, then the Schur triangulation theorem still work since $A$ can be viewed as a complex matrix. However, the decomposition will enforce $Q$ and $T$ to have non-real entries. ##### Schur triangulation theorem (real matrix with real eigenvalues) Let $A$ be a square real matrix with all eigenvalues real. Then there is a real orthogonal matrix $Q$ such that $Q\trans AQ = T$ is a upper triangular matrix. Necessarily, the diagonal entries of $T$ are the eigenvalues of $A$. ##### Schur triangulation theorem (real matrix) Let $A$ be a square real matrix. Then there is a real invertible matrix $Q$ such that $Q^{-1}AQ = T$ has the form $$ T = \begin{bmatrix} B_1 & ~ & * \\ ~ & \ddots & ~ \\ O & ~ & B_t \end{bmatrix}, $$ such that $B_k = \begin{bmatrix} \lambda_k \end{bmatrix}$ if $\lambda_k\in\mathbb{R}$ and $B_k = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ if $\lambda_k = a + bi$ with $b \neq 0$. Necessarily, the diagonal blocks of $T$ determine the eigenvalues of $A$. ## Side stories - cases of real matrices - properties of unitary/orthogonal matrices ## Experiments ##### Exercise 1 執行以下程式碼。 <!-- eng start --> Run the code below. <!-- eng end --> ```python ### code set_random_seed(0) print_ans = False n = 4 eigs = random_int_list(n) Q = random_good_matrix(n - 1, n - 1, n - 1, 3) A2 = Q * diagonal_matrix(eigs[1:]) * Q.inverse() Q2 = identity_matrix(n - 1) Q2[:,0] = Q[:,0] T2 = Q2.inverse() * A2 * Q2 A = zero_matrix(n, n) A[0,0] = eigs[0] A[0,1:] = vector(random_int_list(n - 1)) A[1:,1:] = A2 pretty_print(LatexExpr("Q_2^{-1} A_2 Q_2 ="), Q2.inverse(), A2, Q2, LatexExpr("="), T2) pretty_print(LatexExpr("A ="), A) if print_ans: Qhat2 = block_diagonal_matrix(matrix([[1]]), Q2) T = Qhat2.inverse() * A * Qhat2 pretty_print(LatexExpr(r"\hat{Q}_2^{-1} A_2 \hat{Q}_2 ="), Qhat2.inverse(), A, Qhat2, LatexExpr("="), T) print("eigenvalues of A:", eigs) ``` By running the code above with `seed = 0`, we obtain that $Q_2^{-1} A_2 Q_2 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 21 & 42 & -22 \\ -22 & -59 & 34 \\ -18 & -66 & 41 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}=\begin{bmatrix} 3 & 42 & -22 \\ 0 & 25 & -10 \\ 0 & 60 & -25 \end{bmatrix}$ $A = \begin{bmatrix} -4 & 4 & -4 & -3 \\ 0 & 21 & 42 & -22 \\ 0 & -22 & -59 & 34 \\ 0 & -18 & -66 & 41 \end{bmatrix}$ --- ##### Exercise 1(a) 令 $\hat{Q}_2 = 1 \oplus Q_2$。 求 $\hat{Q}_2^{-1} A\hat{Q}_2$。 <!-- eng start --> Let $\hat{Q}_2 = 1 \oplus Q_2$. Find $\hat{Q}_2^{-1} A\hat{Q}_2$. <!-- eng end --> ##### <font color="#f00">**Answer:**</font> $\hat{Q}_2=\begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & -2 & 1 & 0\\ 0 & -3 & 0 & 1\end{bmatrix},$ and $\hat{Q}_2^{-1}=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 3 & 0 & 1\end{bmatrix}.$ $\hat{Q}_2^{-1}A\hat{Q}_2=\begin{bmatrix} -4 & 21 & -4 & -3 \\ 0 & 3 & 42 & -22 \\ 0 & 0 & 25 & -10 \\ 0 & 0 & 60 & -25\end{bmatrix}.$ --- ##### Exercise 1(b) 求 $A$ 的所有特徵值。 <!-- eng start --> Find the spectrum of $A$. <!-- eng end --> ##### <font color="#f00">**Answer:**</font> $A_3=\begin{bmatrix} 25 & -10\\ 60 & -25\end{bmatrix}, \spec(A_3)=\{5, -5\},$ and $\lambda_3=5.$ And $Q_3^{-1}A_3Q_3=\begin{bmatrix} 1 & 0 \\ -2 & 1\end{bmatrix}\begin{bmatrix} 25 & -10 \\ 60 & -25 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}=\begin{bmatrix} 5 & -10 \\ 0 & -5 \end{bmatrix}.$ Let $\hat{Q}_3=I_2\oplus Q_3,$ $\hat{Q}_2=I_1\oplus Q_2.$ And $Q=\hat{Q}_2\hat{Q}_3.$ Then rewrite $Q^{-1}AQ=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & 1\end{bmatrix}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 3 & 0 & 1\end{bmatrix}\begin{bmatrix} -4 & 4 & -4 & -3 \\ 0 & 21 & 42 & -22 \\ 0 & -22 & -59 & 34 \\ 0 & -18 & -66 & 41\end{bmatrix}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & -3 & 0 & 1\end{bmatrix}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1\end{bmatrix}=\begin{bmatrix} -4 & 21 & -10 & 3 \\ 0 & 3 & -2 & -22 \\ 0 & 0 & 5 & -10 \\ 0 & 0 & 0 & -5\end{bmatrix}.$ Since it is an upper triangular matrix, the eigenvalues of $A$ is the value of diagonal. So $\spec(A)=\{-4, 3, 5, -5\}.$ --- :::info What do the experiments try to tell you? (open answer) ##### <font color="#f00">**Answer:**</font> Tell us how to use the above process to get the upper triangular matrix, and get the eigenvalue by its values of diagonal. ... ::: --- ## Exercises ##### Exercise 2 令 $$ A = \begin{bmatrix} -1 & -4 & 2 \\ 2 & 4 & -1 \\ 0 & -2 & 3 \end{bmatrix}. $$ 求一個實垂直矩陣 $Q$ 使得 $Q\trans AQ$ 為一上三角矩陣。 <!-- eng start --> Let $$ A = \begin{bmatrix} -1 & -4 & 2 \\ 2 & 4 & -1 \\ 0 & -2 & 3 \end{bmatrix}. $$ Find a real orthogonal matrix $Q$ such that $Q\trans AQ$ is an upper triangular matrix. <!-- eng end --> ##### <font color="#f00">**Answer:**</font> $\spec(A)=\{1, 2, 3\}.$ Let $\lambda_1=1,$ and $\ker(A-I)=\operatorname{span}\{\begin{bmatrix}1\\-1\\-1\end{bmatrix}\}.$ Let $V_1=\begin{bmatrix}1\\-1\\-1\end{bmatrix}.$ And expand it to basis $\begin{bmatrix} 1 & 1 & 2\\ -1 & 1 & 1\\ -1 & 0 & 1\end{bmatrix}.$ Since it need to be a orthogonal matrix, it should be $Q=\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{2}{\sqrt{6}}\\ \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}\\ \frac{-1}{\sqrt{3}} & 0 & \frac{1}{\sqrt{6}}\end{bmatrix}.$ Then $Q^TAQ=\begin{bmatrix} \frac{7}{\sqrt{3}} & \frac{1}{\sqrt{3}} & 0 \\ 0 & 6 & 0 \\ 0 & 0 & \frac{3}{2} \end{bmatrix}.$ Thus it is a upper triangular matrix. --- ##### Exercise 3 令 $A$ 為一方陣、 $Q$ 為一可逆矩陣、 而 $D$ 為一上三角矩陣。 已知 $Q^{-1}AQ = D$, 證明 $\spec(A) = \spec(D)$ 且它們就是 $D$ 的對角線元素所成的集合。 <!-- eng start --> Let $A$ be a square matrix, $Q$ an invertible matrix, and $D$ an upper triangular matrix. It is known that $Q^{-1}AQ = D$. Show that $\spec(A) = \spec(D)$ and they equal the set of diagonal entries of $D$. <!-- eng end --> ##### <font color="#f00">**Answer:**</font> 1. **Claim: $\spec(A) = \spec(D)$** By the equation $Q^{-1}AQ = D$, we know that $A$ and $D$ are similar (see 506). Therefore, $p_A(x) = p_D(x)$ and $\spec(A) = \spec(D)$. 2. **Claim: $\spec(D)$ is the set of diagonal entries of $D$.** $D$ is an upper triangular matrix with the form of $$ D = \begin{bmatrix} \lambda_1 & ~ & * \\ ~ & \ddots & ~ \\ O & ~ & \lambda_n \end{bmatrix}. $$ Since $$ D-xI = \begin{bmatrix} \lambda_1-x & ~ & * \\ ~ & \ddots & ~ \\ O & ~ & \lambda_n-x \end{bmatrix}, $$ we get $$p_D(x)=\det(D-xI)=(\lambda_1-x)(\lambda_2-x)...(\lambda_n-x).$$ We can see that $\spec(D)=\{ \lambda_1, \lambda_2, ..., \lambda_n \}$, which is the set of diagonal entries of $D$. ##### Exercise 4 若 $P$ 和 $Q$ 為大小相同的么正矩陣,證明 $PQ$ 和 $QP$ 都是么正矩陣。 若 $P$ 和 $Q$ 為大小相同的實垂直矩陣,證明 $PQ$ 和 $QP$ 都是實垂直矩陣。 <!-- eng start --> If $P$ and $Q$ are unitary matrices of the same order, show that $PQ$ and $QP$ are both unitary. If $P$ and $Q$ are real orthogonal matrices of the same order, show that $PQ$ and $QP$ are both real orthogonal. <!-- eng end --> ##### <font color="#f00">**Answer:**</font> (1)Because $P$ and $Q$ are unitary matrices of the same order,we know $P\times P^* = I_n$ and $Q\times Q^* = I_n$. $PQ\times (PQ)^* = PQQ^*P^* = P\times I_n\times P^* = PP^* = I_n$. $QP\times (QP)^* = QPP^*Q^* = Q\times I_n\times Q^* = QQ^* = I_n$. So $PQ$ and $QP$ are both unitary. (2)Because $P$ and $Q$ are real orthogonal matrices of the same order,we know $P\trans = P^{-1}$ and $Q\trans = Q^{-1}$. $(PQ)\trans = Q\trans(P\trans) = Q^{-1}P^{-1} = (PQ)^{-1}$. $(QP)\trans = P\trans(Q\trans) = P^{-1}Q^{-1} = (QP)^{-1}$. So $PQ$ and $QP$ are both real orthogonal. ##### Exercise 5 證明一般版本的薛爾上三角化定理: ##### Schur triangulation theorem Let $A$ be a square complex matrix. Then there are a unitary matrix $Q$ such that $Q^*AQ = T$ is a upper triangular matrix. Necessarily, the diagonal entries of $T$ are the eigenvalues of $A$. <!-- eng start --> Prove the Schur triangulation theorem. ##### Schur triangulation theorem Let $A$ be a square complex matrix. Then there are a unitary matrix $Q$ such that $Q^*AQ = T$ is a upper triangular matrix. Necessarily, the diagonal entries of $T$ are the eigenvalues of $A$. <!-- eng end --> **Solution:** Let $\lambda_1$ be a element of $\spec(A)$, and $\bv_1$ be a unit vector and eigenvector that corresponds to $\lambda_1$. Assume $Q_1$ is a unitary matrix made up by the $\bv_1$. Then we can use $Q_1$ to triangular part of A, that is $$ Q_1^*AQ_1 = \begin{bmatrix} \lambda_1 & ? \\ O & A_2 \end{bmatrix}. $$ And we let $\lambda_2$ be a element of $\spec(A_2)$, use the same method to get the unitary matrix $Q_2$. We expand $Q_2$ to $Q^{\prime}_2$, and $$ Q_2' = \begin{bmatrix} I & O \\ O & Q_2 \end{bmatrix}. $$ Repeat operation above until we triangular $A$. Then $Q=Q_1Q^{\prime}_2...Q^{\prime}_n$ is a unitary matrix. ##### Exercise 6 證明所有特徵值皆為實數的實矩陣版本的薛爾上三角化定理: ##### Schur triangulation theorem (real matrix with real eigenvalues) Let $A$ be a square real matrix. Then there are a real orthogonal matrix $Q$ such that $Q\trans AQ = T$ is a upper triangular matrix. Necessarily, the diagonal entries of $T$ are the eigenvalues of $A$. <!-- eng start --> Prove the Schur triangulation theorem for real matrices with real eigenvalues. ##### Schur triangulation theorem (real matrix with real eigenvalues) Let $A$ be a square real matrix. Then there are a real orthogonal matrix $Q$ such that $Q\trans AQ = T$ is a upper triangular matrix. Necessarily, the diagonal entries of $T$ are the eigenvalues of $A$. <!-- eng end --> ##### Exercise 7 證明一般實矩陣版本的薛爾上三角化定理: ##### Schur triangulation theorem (real matrix) Let $A$ be a square real matrix. Then there are a real invertible matrix $Q$ such that $Q^{-1}AQ = T$ has the form $$ T = \begin{bmatrix} B_1 & ~ & * \\ ~ & \ddots & ~ \\ O & ~ & B_t \end{bmatrix}, $$ such that $B_k = \begin{bmatrix} \lambda_k \end{bmatrix}$ if $\lambda_k\in\mathbb{R}$ and $B_k = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ if $\lambda = a + bi$ with $b \neq 0$. Necessarily, the diagonal blocks of $T$ determine the eigenvalues of $A$. <!-- eng start --> Prove the Schur triangulation theorem for real matrices. ##### Schur triangulation theorem (real matrix) Let $A$ be a square real matrix. Then there are a real invertible matrix $Q$ such that $Q^{-1}AQ = T$ has the form $$ T = \begin{bmatrix} B_1 & ~ & * \\ ~ & \ddots & ~ \\ O & ~ & B_t \end{bmatrix}, $$ such that $B_k = \begin{bmatrix} \lambda_k \end{bmatrix}$ if $\lambda_k\in\mathbb{R}$ and $B_k = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ if $\lambda = a + bi$ with $b \neq 0$. Necessarily, the diagonal blocks of $T$ determine the eigenvalues of $A$. <!-- eng end --> :::info collaboration: 1 4 problems: 4 - 2, 3, 4, 5 :warning: Missing one problem from Ken. :tired_face: I finished. by Ken moderator: 0 :sob: qc: 1 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully