Kun-Ru Wu
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee
  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    3
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # Nvidia Jetson Nano 使用心得 ## Nano 安裝設定 * 跟PI的用法很像, 先去抓image下來, 然後寫入到sd卡再開機, 也可以用serial console控制 * 作業系統 image: https://developer.nvidia.com/embedded/dlc/jetson-nano-dev-kit-sd-card-image * Win32 image writer (寫入映像檔到SD卡): https://sourceforge.net/projects/win32diskimager/ * 開機時, 就跟安裝ubuntu一樣, 設定使用者名稱/密碼```等 * 板子底部有寫TTL的腳位 (如果要使用TTL, 單純用終端機控制的話, 可以用這個) * Jetson Nano J44 Pin 2 (TXD) → Cable RXD (White Wire) * Jetson Nano J44 Pin 3 (RXD) → Cable TXD (Green Wire) * Jetson Nano J44 Pin 6 (GND) → Cable GND (Black Wire) * Connection speed is 115200, with 8 bits, no parity, and 1 stop bit (115200 8N1). * ref: https://www.jetsonhacks.com/2019/04/19/jetson-nano-serial-console/ * 裝完之後記得先系統更新一下 ``` sudo apt-get update sudo apt-get full-upgrade ``` ## 設定swap * 設定4G的空間作為swap, 之後跑程式會比較順(?) * (1)停止swap, 第一次設定會有錯誤訊息, 因為不存在; (2)新增一個空白4G檔案; (3)該檔案設定為swap; (4)啟用; (5)設定開機自動執行 ``` sudo swapoff /swapfile sudo dd if=/dev/zero of=/swapfile bs=1M count=4096 sudo mkswap /swapfile sudo swapon /swapfile sudo cp /etc/fstab /etc/fstab.bak echo '/swapfile none swap sw 0 0' | sudo tee -a /etc/fstab ``` ## 檢查CUDA * Jetson-nano已經內建CUDA10.0, 修改環境變數確保可以使用CUDA ``` nano ~/.bashrc ``` * 新增下列幾行進去, 然後存檔離開 ``` export CUDA_HOME=/usr/local/cuda-10.0/ export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:$LD_LIBRARY_PATH export PATH=${CUDA_HOME}bin:$PATH ``` * 再載入環境變數, 然後跑 nvcc -V 試試 ``` source ~/.bashrc wufish@Jetson:~$ nvcc -V nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2018 NVIDIA Corporation Built on Sun_Sep_30_21:09:22_CDT_2018 Cuda compilation tools, release 10.0, V10.0.166 ``` ## 檢查 OpenCV * 聽說Jetson-nano有內建OpenCV3.3, 可以用下列指令檢查 ``` pkg-config opencv --modversion ``` * 只是我之前找不到OpenCV, 後來又另外安裝 ``` # echo "** Remove OpenCV3.3 first" sudo sudo apt-get purge *libopencv* # echo "** Install requirement" sudo apt-get update sudo apt-get install -y build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev sudo apt-get install -y libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev sudo apt-get install -y python2.7-dev python3.6-dev python-dev python-numpy python3-numpy sudo apt-get install -y libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev sudo apt-get install -y libv4l-dev v4l-utils qv4l2 v4l2ucp sudo apt-get install -y curl sudo apt-get update # echo "** Download opencv-4.0.0" cd $folder curl -L https://github.com/opencv/opencv/archive/4.0.0.zip -o opencv-4.0.0.zip curl -L https://github.com/opencv/opencv_contrib/archive/4.0.0.zip -o opencv_contrib-4.0.0.zip unzip opencv-4.0.0.zip unzip opencv_contrib-4.0.0.zip cd opencv-4.0.0/ # echo "** Building..." mkdir release cd release/ cmake -D WITH_CUDA=ON -D CUDA_ARCH_BIN="5.3" -D CUDA_ARCH_PTX="" -D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-4.0.0/modules -D WITH_GSTREAMER=ON -D WITH_LIBV4L=ON -D BUILD_opencv_python2=ON -D BUILD_opencv_python3=ON -D BUILD_TESTS=OFF -D BUILD_PERF_TESTS=OFF -D BUILD_EXAMPLES=OFF -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local .. make -j3 sudo make install ``` * 我後來是用上面的script安裝opencv, 目前看起來應該是可以用(!?) * 來源: https://github.com/AastaNV/JEP/blob/master/script/install_opencv4.0.0_Nano.sh ## 檢查cuDNN * nano有內建cuDNN, 有範例程式可以測試 ``` cd /usr/src/cudnn_samples_v7/mnistCUDNN sudo make sudo chmod a+x mnistCUDNN ./mnistCUDNN (執行結果懶得貼, 最後有 "Test passed!" 這句話) ``` ## 安裝 TensorFlow GPU * 安裝python相關套件 ``` sudo apt-get install python3-pip python3-dev python3 -m pip install --upgrade pip sudo apt-get install python3-scipy sudo apt-get install python3-pandas sudo apt-get install python3-sklearn ``` * 安裝Tensorflow * 可以去這個網址抓其他版本下來 https://developer.download.nvidia.com/compute/redist/jp/v42/tensorflow-gpu/ ``` sudo apt-get install python3-pip libhdf5-serial-dev hdf5-tools wget https://developer.download.nvidia.com/compute/redist/jp/v42/tensorflow-gpu/tensorflow_gpu-1.13.1+nv19.3-cp36-cp36m-linux_aarch64.whl pip3 instal tensorflow_gpu-1.13.1+nv19.3-cp36-cp36m-linux_aarch64.whl ``` * 安裝Keras ``` sudo pip3 install keras ``` * 測試Tensorflow與Keras, 可以參考這個網頁: https://blog.csdn.net/beckhans/article/details/89146881 * Keras: 終端機打 python3, 進去之後再打 import keras, 如果看到using TensorFlow backend就表示成功 ## 安裝 jetson-inference * 安裝相關工具, 還有source code下來編譯 ``` sudo apt-get install git cmake git clone https://github.com/dusty-nv/jetson-inference cd jetson-inference git submodule update --init mkdir build cd build cmake ../ make sudo make install ``` * 如果沒發生錯誤訊息, 應該就裝好了, 然後就可以開始測試 (資料夾路徑: jetson-inference/build/aarch64/bin) ``` cd build/aarch64/bin ``` * 執行內建的物件辨識範例 (記得接上CSI camera模組, 拿Raspberry PI的相機模組就可以了), 這個範例感覺只偵測人員而已 ``` ./detectnet-camera.py ``` ## 安裝YOLO * 除了官方的辨識工具, 也可以裝一下YOLO來辨識物件. 不過Nano應該只適合跑tiny-YOLO. XD ``` git clone https://github.com/pjreddie/darknet.git cd darknet nano Makefile # Makefile的這三個參數改成 =1 GPU=1 CUDNN=1 OPENCV=1 make -j4 ``` * make完之後, 可以抓weight檔下來 ``` wget https://pjreddie.com/media/files/yolov3-tiny.weights ``` * 偵測內建的範例圖片 ``` ./darknet detect cfg/yolov3-tiny.cfg yolov3-tiny.weights data/dog.jpg ``` * 官網有提到detect這個參數: https://pjreddie.com/darknet/yolo/ ``` 這兩個是一樣的意思 ./darknet detector test cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights data/dog.jpg ./darknet detect cfg/yolov3-tiny.cfg yolov3-tiny.weights data/dog.jpg 可以想成detect = detector test cfg/coco.data ``` * 偵測攝影機的畫面 ``` 官網範例 ./darknet detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights 之前測試可行的指令 ./darknet detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights "'nvarguscamerasrc ! video/x-raw(memory:NVMM), width=1920, height=1080, format=(string)NV12, framerate=(fraction)30/1 ! nvtee ! nvvidconv flip-method=2 ! video/x-raw, width=(int)1280, height=(int)720, format=(string)BGRx ! videoconvert ! appsink'" ``` ## YOLO + Python * source: https://github.com/madhawav/YOLO3-4-Py * 建議從source code開始安裝 * 先去編輯環境變數, 然後重新載入 ``` // 編輯環境變數 nano ~/.bashrc // 加入下面三行, 不過這個跟一開始的設定有點重複, 可以合併使用, 重複地不用再寫一次 // darknet的路徑記得改成自己的 export DARKNET_HOME=/your_PATH_to_darknet/ export CUDA_HOME=/usr/local/cuda-10.0/ export PATH=${DARKNET_HOME}:${CUDA_HOME}bin:${PATH} // 載入 source ~/.bashrc ``` * 下載YOLO3-4-Py, 設定, 編譯, 跑範例程式 ``` git clone https://github.com/madhawav/YOLO3-4-Py // 設定GPU參數, 直接在終端機打下列兩行 (兩個指令) export GPU=1 export OPENCV=1 // 開始安裝 python3 setup.py build_ext --inplace pip3 install . ``` * 執行範例程式 ``` python3 webcam_demo.py ``` * 在webcam的範例程式裡, 有設定一些設定檔的資訊: yolov3.cfg, yolov3.weights, coco.data * 記得改成上面跑的tiny-yolo的檔案, 也要注意檔案的路徑 ``` net = Detector(bytes("cfg/yolov3.cfg", encoding="utf-8"), bytes("weights/yolov3.weights", encoding="utf-8"), 0, bytes("cfg/coco.data", encoding="utf-8")) ``` * 實測結果: * 一開始跑這個python時, GPU的設定沒有弄好, 變成單純用CPU跑yolo+python, 當時一張frame需要約4秒時間處理 * 後來GPU的參數設好, 一張frame約0.14, 設定3 FPS我覺得視覺感受還可以接受 (單純站在監控的角度來看 XD) ## 測試 CSI camera 畫面 * 在終端機打這個指令, 可以看到攝影機的畫面 ``` gst-launch-1.0 nvarguscamerasrc ! 'video/x-raw(memory:NVMM),width=3820, height=2464, framerate=21/1, format=NV12' ! nvvidconv flip-method=0 ! 'video/x-raw,width=960, height=616' ! nvvidconv ! nvegltransform ! nveglglessink -e ``` ## 參考資料 * https://me.csdn.net/beckhans * https://www.jetsonhacks.com/2019/04/19/jetson-nano-serial-console/ * https://pjreddie.com/darknet/yolo/ * https://denor.jp/jetson-nano%E3%81%A7gpu%E3%81%A8opencv%E3%81%8C%E6%9C%89%E5%8A%B9%E3%81%AAyolo%E3%82%92%E3%83%93%E3%83%AB%E3%83%89%E3%81%99%E3%82%8B%E3%81%AB%E3%81%AF * https://chtseng.wordpress.com/2018/10/08/%E5%A6%82%E4%BD%95%E5%9C%A8python%E7%A8%8B%E5%BC%8F%E4%B8%AD%E4%BD%BF%E7%94%A8yolo/ * https://github.com/madhawav/YOLO3-4-Py

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully