Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    --- title: 2020FMath203 forum archive tags: 2020F, Math203 --- [TOC] ### 重複物件時環狀排列的公式 >課本有提到重覆物件的環狀排列,請問它的公式是甚麼?以及它是如何推導的 >[name=YEH JUEWE WEN] > 麻煩附一下連結、或是課本的位置。 > [name=Jephian Lin] [time=Sat, Oct 10] [color=teal] > [連結](https://rellek.net/book/s_intro_enum.html) > [name=YEH JUEWE WEN] > 課本這部份在討論離散可能會考慮的問題 > 它要強調的是很多問題都可以算得出來,但是不見得會有明確的算法,而離散數學的其中一部份就是在討論怎樣可以有算地計數。 > 以這個例子來說,它沒有單純的公式,但它可以用每個著色的對稱性來分類。這部份要到下學期才會講到,可以參考[這邊](https://rellek.net/book/s_polya_square.html)。 > [name=Jephian Lin] [time=Sat, Oct 10] [color=teal] ### 上課講的那串數字到底是什麼? > $1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, \ldots$ > [name=Jephian Lin] [time=Tue, Sep 22] [color=teal] >將所有數字五個分成一組,12341|23451|23452|34562|34563|45673。分隔開的五個數分別標記為abcde,當e等於a時,下一組即上一組的abcd都加1,e不變動;若e等於a-1時,下一組的e加1使e=a,abcd不變動。 >[name=Lai,Chen Yu] [time=Thu, Oct 1] [color=blueviolet] > 當然!這也是一種規律,但我心中想的比這還單純一些。課本的每個章節最後都有一個 [Discussion](https://rellek.net/book/s_induction_discussion.html)。也許裡面有答案?另外請再私下跟我說 Lai 是誰? > [name=Jephian Lin] [time=Fri, Oct 2] [color=teal] >我不知道這個討論串是不是問題還沒解決所以決定來寫結論XD。\ >就是美國的硬幣有幣值cent(0.01)、nickel(0.05)、dime(0.10)、quarter(0.25)、half(0.5)、coin(1)\ >所以這個數列的次序代表我想用最少的硬幣表示出這個次序的金額,以cent為單位,所以:\ >1234123451234523456234561234523456345673,我數到40就好了XD >[name=Robinson Chiang][time=Wed,Oct 7][color=aqua] :::success Lai, AL point +0.5. :tada: Chen Yu, AL point +0.5. :tada: Robinson Chiang, AL point +0.5. :tada: ::: > Bingo! > [name=Jephian Lin] [time=Sat, Oct 10] [color=teal] ### 鋪地磚 > 考慮排成一排的 $n$ 個正方格,如果手上有兩種地磚,一種是 $1\times 1$、一種是 $1\times 2$,令 $a_n$ 為用這兩種地磚鋪滿整排的方法數(e.g., $a_1=1$, $a_2=2$),求 $a_n$? > [name=Jephian Lin] [time=Wed, Sep 16] [color=teal] > $a_n$應該會=1+$\binom{n-1}{1}$+$\binom{n-2}{2}$+...+$\binom{n-k}{k}$ (停止條件為 n-k<k) 第一項是全部都是用$1\times 1$的,所以方法數為1,第二項是用一個是$1\times 2$其他用$1\times 1$的總共為n-1塊,所以排列的方法數為$\binom{n-1}{1}$,後面的以此類推 > [name=Shuhan Hsieh, Wei-ju Chyr] [time=Thu, Sep 17] [color=Aqua] > 疑,沒看懂,可以再說明一下 $\binom{n-2}{2}$ 嗎? > [name=Jephian Lin] [time=Sun, Sep 20] [color=teal] > $\binom{n-1}{1}$是放入一個$1\times 2$的其他剩餘n-2格用n-2個$1\times 1$的填滿,所以總共為n-1個,然後選一個位置放$1\times 2$的,所以為$\binom{n-1}{1}$;$\binom{n-2}{2}$則是放入兩個$1\times 2$的其他剩餘n-4格用n-4個$1\times 1$的填滿,所以總共為n-2個,然後選兩個位置放$1\times 2$的,所以為$\binom{n-2}{2}$ > [name=Shuhan Hsieh] [time=Sun, Sep 20] [color=Aqua] :::success Shuhan Hsieh, AL point +0.5. :tada: Wei-ju Chyr, AL point +0.5. :tada: ::: > 有趣耶!跟我想的不一樣,不過這是正確的:) 第一項 1 也可以寫成 $\binom{n}{0}$,所以完整的答案是 > $$\binom{n}{0} + \binom{n-1}{1} + \binom{n-2}{2} + \cdots + \binom{n-k}{k}, k = \left\lfloor\frac{n}{2}\right\rfloor$$ > 附加一題,估且把 $a_0$ 當作 $1$(不放也算是一種放法),所以 $a_0=1$, $a_1=1$, $a_2=2$,算一下後面幾項,然後想想這個數列有沒有什麼名字? > [name=Jephian Lin] [time=Sun, Sep 20] [color=teal] >算了前面幾項得到 $a_0=1$, $a_1=1$, $a_2=2$, $a_3=3$, $a_4=5$, $a_5=8$, $a_6=13$, $a_7=21$ ...此數列應為費氏數列 ($a_0=1$, $a_1=1$, $a_n=a_{n-1}+a_{n-2}$) > [name=Shuhan Hsieh] [time=Sun, Sep 20] [color=Aqua] > 所以費氏數列必須滿足 $a_n=a_{n-1}+a_{n-2}$。由我們鋪磚的定義,可以看出 $a_n$ 有這個遞迴關係式嗎? > [name=Jephian Lin] [time=Wed, Sep 16] [color=teal] >恕我吐槽一下,我猜測樓上日期應該key錯了XD\ >再來回答教授的問題,當然可以從定義看出來XD,這好像是排容還是什麼有點忘了。就是從定義來看這題可以說是我要排{$a_1$,$a_2$,....,$a_n$:$a_i$= 1 or 2}使得總合為N。\ >就慢慢觀察,那麼我會從3開始看,我想總合為3,則有21、12、111,那就開始思考case:\ >Case1:\ >When $a_1$=1,那我的情況就是要鋪兩格的意思,那就跟我N=2的舖法是一樣的。\ >Case2:\ >When $a_1$=2,那我就是要鋪一格的意思,跟我N=1的舖法一樣。\ >So {N=3}={N=1}+{N=2} >\ >那我繼續推理就可得到一個結論:**{N}={N-1}+{N-2}**,i.e. Fibonnaci sequence. >[name=Robinson Chiang][time=Wed,Oct 7][color=aqua] :::success Shuhan Hsieh, AL point +0.5. :tada: Robinson Chiang, AL point +0.5. :tada: ::: > 除了排版有待加強以外我沒什麼好抱怨的:smiley: > [name=Jephian Lin] [time=Sat, Oct 10] [color=teal] ### 近視會傳染 :scream: > 誤用數學歸納法會得到奇怪的結論。請拋開一切日常的直覺,細細品味以下的證明,並思考問題出在哪? > **敘述 $S_n$**:若 $n$ 個人之中有一人近視,則全部 $n$ 個人都會近視。 > **basic step**: 當 $n=1$ 時,敘述 $S_1$ 是正確的,的確如果 1 人之中有一人近視,則全部(只有 1 個人)都會近視。 > **indutive step**: > 假設 $S_n$ 成立。 > 考慮一群 $n+1$ 個人組成的集合 $A = \{p_1,\ldots,p_{n+1}\}$,並假設其中有一人近視。不失一般性,令近視的人叫 $p_1$。 > 令 $B = \{p_1,\ldots,p_{n}\}$ 及 $C = \{p_2,\ldots,p_{n+1}\}$ 為兩群人數為 $n$ 的集合。 > 因為 $B$ 有 $n$ 個人且 $p_1$ 近視,根據歸納法假設,$B$ 中的所有人都會近視;如此一來,我們知道 $p_2$ 也有近視。 > 這時 $C$ 有 $n$ 個人且 $p_2$ 近視,根據歸納法假設,$C$ 中的所有人都會近視;如此一來,$A$ 中的所有人都近視。 > 我們得到 $S_n$ 成立 $\implies$ $S_{n+1}$ 成立。 > 根據數學歸納法,近視會傳染。(請小心你周圍有近視的同學...) > [name=Jephian Lin] [time=Fri, Oct 2] [color=teal] >我重新思考了步驟: >證明的prop是\ >$S_{n}$:如果n個人中有1人近視,則n個人都近視。\ >那麼我想使用的MI.應該是\ >Step1:\ >當|S|=1,S={$n_1$},$n_1$ is nearsighted, then for every element in S, they are all nearsighted obviously.\ >Step2:\ >我假設|S|=n成立,則我觀察|S|=n+1的狀況,**並且由n的集合擁有的性質去induct**,這是比較常發生失誤的地方。不過教授的例子特別的地方是inductive step裡面的B,C要想達成目的必須有個假設:\ >**B∩C ≠ ∅**\ >因此我觀察n=1到n=2的induction就可以發現B跟C交集為空,因此有誤。\ >連假愉快! >[name=Robinson Chiang][time=Sun,Oct 4][color=Aqua] :::success Robinson Chiang, AL point +1. :tada: ::: > Beautiful explanation! > [name=Jephian Lin] [time=Mon, Oct 5] [color=teal] ### 教師節快樂!:mortar_board: > :rolling_on_the_floor_laughing::rolling_on_the_floor_laughing::rolling_on_the_floor_laughing: > 表情符號顯示不出來QQ > [name=mathisfun] [time=Sat, Mon 28] [color=magenta] > 謝謝! :rofl: 好像已經不能用了,我幫你找了一個類似的。 > [name=Jephian Lin] [time=Tue, Sep 29] [color=teal] ### $S(n)\leq n\log_2n$ 的完整證明 > 如果 $S(2) = 1$, $S(4) = 6$, $S(2n) = 2n + 2S(n)$。 > 證明 $S(n)\leq n\log_2n$ 對於所有 $n=2^k, k\geq 1$。 > [name=Jephian Lin] [time=Sat, Sep 26] [color=teal] > 1.當k=1時,$S(2^1) = 1\leq 2^1\log_2 2^1=2*1=2$成立。 > 2.假設$k=t$,$t>1$時,$S(2^t)\leq 2^t\log_2 2^t$成立。 > 3.當$k=t+1$時, > $S(2^{t+1})=S(2*2^t)=2*2^t+2S(2^t)(題目條件)$ > $\leq 2*2^t+2*2^t\log_2 2^t(條件2)$ > $=2*2^t+2*2^t*t=2*2^t(1+t)$ > $=2^{t+1}(t+1)=2^{t+1}\log_2 2^{t+1}$亦成立。 > 由數學歸納法得出$S(n)\leq n\log_2 n$ >[name=Chen Yu] [time=Sun, Sep 27][color=Lime] :::success Chen Yu, AL point +0.5. :tada: ::: > Nice work! 有你們這群優秀的學生真好! > [name=Jephian Lin] [time=Sun, Sep 27] [color=teal] ### `sumrecursive` > 參考課本的[程式](https://rellek.net/book/s_induction_statements.html#sage-4)。 > 計算 $\sum_{n=1}^{50} (-1)^n - 2^n + 10$ 的值,並附上你的程式碼。 > [name=Jephian Lin] [time=Thu, Sep 24] [color=teal] ```python def sumrecursive(n): if n == 1: return 2; else: return sumrecursive(n-1) + (n*n - 2*n + 3) sumrecursive(3) ``` >$\sum_{n=1}^{50} (-1)^n - 2^n + 10$ = -2251799813684746 > [name=Shuhan Hsieh] [time=Sat, Sep 26] [color=Aqua] ```python def sumrecursive(n): if n == 1: return 7; else: return sumrecursive(n-1) + (((-1)^n) - 2^n + 10) sumrecursive(50) ``` :::success Shuhan Hsieh, AL point +0.5. :tada: ::: > Nice! 順便提一下 Sage 裡 `2^n` 和 `2**n` 都是 `2` 的 `n` 次方的意思,但是一般 Python 裡只有 `2**n` 才是 `2` 的 `n` 次方的意思,`2^n` 是別的意思。 > [name=Jephian Lin] [time=Sun, Sep 27] [color=teal] ### Theorem 3.9 > Theorem 3.9. Let m,n,cab,am+bn=ccmn. > Let's see how the Euclidean algorithm can be used to write > gcd(m,n)am+bn a,b∈Z > 這是要證的定理3.9嗎? > 有連結嗎我發現找不到他了 > 請閱讀討論區的[使用說明](#%E4%BD%BF%E7%94%A8%E8%AA%AA%E6%98%8E)。 > 課程筆記上已經更新連結了,或是參考這個連結 [Theorem 3.9](https://hackmd.io/@jlch3554/2020FMath203-notes#Theorem-39)。週五上課會講到。 > [name=Jephian Lin] [time=Wed, Sep 23] [color=teal] ### 隔一格、隔兩格? > 考慮一排 $n$ 個座位,要選 $k$ 個位置放坐墊。 > 如果一個座位可以放多個座墊,那放法有 $H^n_k$ 種。(坐墊和坐墊之間沒距離) > 如果一個座位只能放一個坐墊,那放法有 $C^n_k$ 種。(坐墊和坐墊之間距離至少為 $1$) > 如果坐墊和坐墊之間距離至少為 $2$(就是一定要隔一格),那放法有幾種? > 如果坐墊和坐墊之間距離至少為 $3$(就是一定要隔兩格),那放法有幾種? > [name=Jephian Lin] [time=Sun, Sep 20] [color=teal] >隔一格可以先把所有坐墊中間放一個空位,即剩下n-2k+1個空位,剩下的空位再從k個座位的中間加上兩側即k+1用H排序決定剩下空位位置,所以為$H^{k+1}_{n-2k+1}$種。隔兩格也是一樣的道理,所以是$H^{k+1}_{n-3k+2}$種。 >[name=Chen Yu] [time=Sun, Sep 20][color=Lime] > 答案是正確的。可以說明一下 $n-2k+1$ 是怎麼來的嗎?為什麼先把所有坐墊中間放一個空位,會剩下 $n-2k+1$ 個空位? > [name=Jephian Lin] [time=Mon, Sep 21] [color=teal] >就所有n個座位扣掉k個排上坐墊的位置,再扣去k個坐墊兩兩中間的空位即k-1個空隔,所以剩下還沒有排進去的空位還有n-k-(k-1)=n-2k+1個空位。 >[name=Chen Yu] [time=Sun, Sep 21][color=Lime] :::success Chen Yu, AL point +0.5. :tada: ::: ### 這個等式怎麼證明? > 如果 $a+b = n$,則 > $$\binom{n}{k} = \binom{a}{0}\binom{b}{k} + \binom{a}{1}\binom{b}{k-1} + \cdots +\binom{a}{k}\binom{b}{0}.$$ > [name=Jephian Lin] [time=Wed, Sep 16] [color=teal] > 我不知道怎麼證明,但這個式子可以想成:有a個男生,b個女生,要在其中選k個人。 > [name=Lifang Lu] [time=Wed, Sep 16] [color=LightSkyBlue] :::success Lifang Lu, AL point +0.5. :tada: ::: >我想到的是利用二項式定理去證明,用 $(x+y)^{a+b} = (x+y)^a \times (x+y)^b$ ,找 $x^ky^{a+b-k}$ 那一項的係數兩邊相等,就可以得到上面那條式子(已更正了) > [name=Shuhan Hsieh] [time=Wed, Sep 16] [color=Aqua] :::success Shuhan Hsieh, AL point +0.5. :tada: ::: > 應該是 $(x+y)^{a+b}= (x+y)^a * (x+y)^b$ > [name=Lifang Lu] [time=Thu, Sep 17] [color=LightSkyBlue] > 兩個都沒錯喔! > Lifang Lu: 你只要把你的敘述寫完整就是證明了。 > 考慮一班 $n$ 個人,其中 $a$ 個男生 $b$ 個女生。 > 若要從班上挑出 $k$ 個人,有 $\binom{n}{k}$ 種挑法。 > 同時另一種算法是: > 從男生中挑出 $0$ 個、再從女生中挑出 $k$ 個,有 $\binom{a}{0}\binom{b}{k}$ 種方法。 > 從男生中挑出 $1$ 個、再從女生中挑出 $k-1$ 個,有 $\binom{a}{1}\binom{b}{k-1}$ 種方法。 > ... > 從男生中挑出 $k$ 個、再從女生中挑出 $0$ 個,有 $\binom{a}{k}\binom{b}{0}$ 種方法。 > 因此兩邊等式成立。 > [name=Jephian Lin] [time=Wed, Sep 16] [color=teal] ### 這個數列會不會停下來? > 課本題到一個數列叫作 Collatz sequence,它的做法是這樣: > 1. 選一個正整數 $n$ > 2. 如果 $n$ 是奇數,則 $n \leftarrow 3n+1$ > 3. 如果 $n$ 是偶數,則 $n \leftarrow n/2$ > 4. 一直重覆步驟 2 和 3 直到 $n$ 變為 $1$ 為止。 > [color=teal] > 比如說 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1。我試了很多數都會停下來,它真的都會停下來嗎? > [name=Jephian Lin] [time=Tue, Sep 8] [color=teal] > 奇數一定會變成偶數,而偶數不一定會變成奇數,而且單看奇數數列有變小的趨勢,直到 $2^k$ ($k\in\mathbb{N}$)出現,最後變成1。 > [name=Lifang Lu] [time=Fri, Sep 11] [color=LightSkyBlue] :::success Lifang Lu, AL point +1. :tada: ::: > 很好的觀察,所以有兩個重點: > 第一:奇數變偶數,偶數會一直變小變成奇數 > 第二:一但出現 $2^k$ 的形式就會一路降為 $1$ > 所以重點在於奇數的部份是不是會一直下降,但目前看起來好像有升有降 > 有辦法找到一個比我的例子還長的數列嗎? > (我幫你留言中的數學式排版了一下) > [name=Jephian Lin] [time=Tue, Sep 8] [color=teal] > 如果只是要找長數列只需從三的奇數倍數找,在不考慮偶數的情況下,因為偶數可以藉由/2而變為奇數,加上3n+1的關係使得此數列只有第一個可能是三的倍數, > ex:9 28 14 7 ... > [name=wei cheng] [time=Fri, Sep 11] [color=yourcolor] > 這個主意不錯:**只有第一個數可能是三的倍數**。可以給個具題的例子嗎?比如說 9 開始的話真的會比較長嗎? > [name=Jephian Lin] [time=Fri, Sep 11] [color=teal] > 數列要比你長很簡單,首位為 2^17 就行,只是沒有奇數。 > [name=Lifang Lu] [time=Fri, Sep 11] [color=LightSkyBlue] :::success Lifang Lu, AL point +0.5. :tada: ::: > 其實比較長要看跟誰比,如果將 $f(n)=3n+1$, $g(n)=n/2$,$f(n)$、$g(n)$ 的數列必然比n的數列短,因為 $f,g$ 皆是($\mathbb{N}\to \mathbb{N}$)上 1-1 函數,所以只要出現已經做出來的數字其數列必收斂至1。 > 所以9的數列中出現7,則表示9的數列必然比7長並且收斂到1。 > 上面錯誤已修正。 > [name=wei cheng] [time=Fri, Sep 11] [color=yourcolor] :::success wei cheng, AL point +0.5. :tada: ::: > Nice work! 有興趣的可以再參考一下[維基百科:Collatz sequence](https://en.wikipedia.org/wiki/Collatz_conjecture) 裡的更多內容~ > [name=Jephian Lin] [time=Sat, Sep 12] [color=teal]

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully