Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 基底 Basis ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$ ```python from lingeo import random_good_matrix ``` ## Main idea Let $V$ be a subspace in $\mathbb{R}^n$ and $S$ a set of vectors. The set $S$ is a **spanning set** of $V$ if $V = \vspan(S)$. The set $S$ is a **basis** of $V$ if 1. $S$ is a spanning set of $V$, and 2. $S$ is independent. In other words, $S$ is a basis of $V$ if every vector in $V$ can be written as a linear combination of $S$ and the representation is unique. Let $\mathcal{E}_n = \{ \be_1, \ldots, \be_n \}$ be the columns of $I_n$. Then $\beta$ is a basis of $\mathbb{R}^n$. We call $\mathcal{E}_n$ as the **standard basis** of $\mathbb{R}^n$. Let $S$ and $T$ be two sets of vectors in $\mathbb{R}^n$. If $T\subseteq\vspan(S)$, then $\vspan(T)\subseteq\vspan(S)$. Suppose the sets $S$ and $T$ are finite. Let $A_S$ and $A_T$ be the matrices whose columns are vectors in $S$ and in $T$, respectively. Let $\left[\begin{array}{c|c} R_S & R_T \end{array}\right]$ be the reduced echelon form of $\left[\begin{array}{c|c} A_S & A_T \end{array}\right]$. Then the following are equivalent: 1. $T\subseteq\vspan(S)$. 2. A row in $R_T$ is zero whenever the corresponding row in $R_S$ is zero. Let $A$ be an $m\times n$ matrix. Then the set of columns of $A$ is a basis of $\Col(A)$ if $\ker(A) = \{\bzero\}$. In particular, if $m = n$ and $A$ is invertible, then the set of columns of $A$ is a basis of $\mathbb{R}^n$. ## Side stories - basis of polynomials - interpolation ## Experiments ##### Exercise 1 執行下方程式碼。 令 $S$ 和 $T$ 為 $A_S$ 和 $A_T$ 的各行向量。 已知 $\left[\begin{array}{c|c} A_S & A_T \end{array}\right]$ 的最簡階梯形式矩陣為 $\left[\begin{array}{c|c} R_S & R_T \end{array}\right]$﹐ 而 $\left[\begin{array}{c|c} A_T & A_S \end{array}\right]$ 的最簡階梯形式矩陣為 $\left[\begin{array}{c|c} Q_T & Q_S \end{array}\right]$。 <!-- eng start --> Run the code below. Let $S$ and $T$ be the columns of $A_S$ and $A_T$. Suppose $\left[\begin{array}{c|c} R_S & R_T \end{array}\right]$ is the reduced echelon form of $\left[\begin{array}{c|c} A_S & A_T \end{array}\right]$, while $\left[\begin{array}{c|c} Q_T & Q_S \end{array}\right]$ is the reduced echelon form of $\left[\begin{array}{c|c} A_T & A_S \end{array}\right]$. <!-- eng end --> ```python ### code set_random_seed(0) print_ans = False m,n,r = 5,4,4 A = random_good_matrix(m,n,r) ES = random_good_matrix(3,3,3) ET = random_good_matrix(3,3,3) SinT = choice([True, False]) TinS = choice([True, False]) if SinT and TinS: AS,AT = A[:,:3],A[:,:3] if SinT and not TinS: AS,AT = A[:,[0,1,1]],A[:,:3] if not SinT and TinS: AS,AT = A[:,:3],A[:,[0,1,1]] if not SinT and not TinS: AS,AT = A[:,:3],A[:,1:] AS = AS * ES AT = AT * ET ST = AS.augment(AT, subdivide=True) RST = ST.rref() TS = AT.augment(AS, subdivide=True) QTS = TS.rref() print("[ A_S | A_T ] =") show(ST) print("[ R_S | R_T ] =") show(RST) print("[ Q_T | Q_S ] =") show(QTS) if print_ans: print("span(S) in span(T)?", SinT) print("span(T) in span(S)?", TinS) ``` By setting `seed = 0` , we get $\left[\begin{array}{c|c} A_S & A_T\end{array}\right] = \left[\begin{array}{ccc|ccc} 42 & -71 & 244 & 49 & 72 & 8 \\ -159 & 270 & 919 & -191 & -279 & -35 \\ 610 & -1035 & -3529 & 729 & 1066 & 131 \\ -2590 & 4396 & 14978 & -3102 & -4534 & -562 \\ 6356 & -10789 & -36753 & 7617 & 11132 &1383 \end{array}\right],$ $\left[\begin{array}{c|c} R_S & R_T \end{array}\right] = \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 43 & 67 & 6 \\ 0 & 1 & 0 & 11 & 18 & 0 \\ 0 & 0 & 1 & 4 & 6 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right],$ and $\left[\begin{array}{c|c} Q_T & Q_S \end{array}\right] = \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 18 & -31 & -108 \\ 0 & 1 & 0 & -11 & 19 & 66 \\ 0 & 0 & 1 & -6 & 10 & 37 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right].$ --- ##### Exercise 1(a) 問 $\vspan(S)\subseteq\vspan(T)$? <!-- eng start --> Is $\vspan(S)\subseteq\vspan(T)$? <!-- eng end --> :::warning - [x] Split the sentence or add some conjunctions: Every vector in $S$ is in the $\operatorname{Col}(A_T),$ we know that $\operatorname{Col}(A_T)=\vspan(T),$ so $S\subseteq\vspan(T),$ then know that $\vspan(S)\subseteq\vspan(T).$ --> Every vector in $S$ is in the $\operatorname{Col}(A_T),$ ==so== we know that $\operatorname{Col}(A_T)=\vspan(T).$ ==period here== ~~so~~ ==Thus,== $S\subseteq\vspan(T),$ ~~then~~ ==and== know that $\vspan(S)\subseteq\vspan(T).$ ::: ##### <font color="#f00">**Answer:**</font> The reduced row echelon form of $\left[\begin{array}{c|c} A_T & A_S \end{array}\right]$ is $\left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 18 & -31 & -108 \\ 0 & 1 & 0 & -11 & 19 & 66 \\ 0 & 0 & 1 & -6 & 10 & 37 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right].$ We can know $$ A_T\begin{bmatrix} 18 & -31 & -108\\ -11 & 19 & 66\\ -6 & 10 & 37\\ \end{bmatrix}=A_S. $$ Every vector in $S$ is in the $\operatorname{Col}(A_T),$ and we know that $\operatorname{Col}(A_T)=\vspan(T)$. Thus, $S\subseteq\vspan(T),$ and we know that $\vspan(S)\subseteq\vspan(T).$ --- :::warning - [x] same as 1(a) ::: ##### Exercise 1(b) 問 $\vspan(T)\subseteq\vspan(S)$? <!-- eng start --> Is $\vspan(T)\subseteq\vspan(S)$? <!-- eng end --> ##### <font color="#f00">**Answer:**</font> The reduced row echelon form of $\left[\begin{array} {c|c} A_S & A_T \end{array}\right]$ is $\left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 43 & 67\ & 6 \\ 0 & 1 & 0 & 11 & 18 & 0 \\ 0 & 0 & 1 & 4 & 6 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right].$ We can know $$A_S\begin{bmatrix} 43 & 67 & 6\\ 11 & 18 & 0\\ 4 & 6 & 1\\ \end{bmatrix}=A_T. $$ Every vector in $T$ is in the $\operatorname{Col} (A_S),$ and we know that $\operatorname{Col} (A_S)=\vspan(S).$ Thus, $T\subseteq\vspan(S),$ and we know that $\vspan(T)\subseteq\vspan(S).$ --- ## Exercises ##### Exercise 2(a) 執行以下程式碼。 其中 $R$ 是 $A$ 的最簡階梯形式矩陣。 說明 $A$ 的行向量所成的集合 是 $A$ 的行空間的基底。 <!-- eng start --> Run the code below. Suppose $R$ is the reduced echelon form of $A$. Explain why the columns of $A$ form a basis of the column space of $A$. <!-- eng end --> ```python ### code set_random_seed(0) # print_ans = False m,n,r = 5,3,3 A = random_good_matrix(m,n,r) print("A =") show(A) R = A.rref() print("R =") show(R) ``` :::warning - [x] Wrong statement: By definition, we know that every vector in ==$\Col(A)$== can be written as a linear combination of ==columns of $A$== ::: ##### <font color="#f00">**Answer:**</font> By setting `seed = 0` , we get : $$A = \left[\begin{array}{ccc} 1 & 3 & 5 \\ 5 & -14 & -30 \\ -15 & -42 & -89 \\ 28 & 79 & 162 \\ -13 & -37 & -73 \ \end{array}\right], \,R = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right]. $$ We know that columns of $A$ are linearly independent since $\ker(A)=\{\bzero\}$ by checking the reduced row echelon form of $A$. By definition, we know that every vector in $\Col(A)$ can be written as a linear combination of cloumns of $A$ and the representation is unique, so the set of all the column vectors in $A$ is a basis of $\Col(A)$. --- ##### Exercise 2(b) 執行以下程式碼。 其中 $R$ 是 $A$ 的最簡階梯形式矩陣。 說明 $A$ 的行向量所成的集合 是 $\mathbb{R}^4$ 的基底。 <!-- eng start --> Run the code below. Suppose $R$ is the reduced echelon form of $A$. Explain why the columns of $A$ form a basis of $\mathbb{R}^4$. <!-- eng end --> ```python ### code set_random_seed(0) # print_ans = False m,n,r = 4,4,4 A = random_good_matrix(m,n,r) print("A =") show(A) R = A.rref() print("R =") show(R) ``` ##### <font color="#f00">**Answer:**</font> --- ##### Exercise 2(c) 令 $$ \beta = \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \right\} $$ 且 $$ V = \{ \bx\in\mathbb{R}^3 : \inp{\bone}{\bx} = 0 \}. $$ 其中 $\bone$ 是 $\mathbb{R}^3$ 中的全 $1$ 向量。 證明 $\beta$ 是 $V$ 的一組基底。 <!-- eng start --> Let $$ \beta = \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \right\} $$ and $$ V = \{ \bx\in\mathbb{R}^3 : \inp{\bone}{\bx} = 0 \}. $$ Here $\bone$ is the all-ones vector in $\mathbb{R}^3$. Show that $\beta$ is a basis of $V$. <!-- eng end --> ##### <font color="#f00">**Answer:**</font> --- ##### Exercise 3 以下的例子說明了多項式也有類似地基底的性質: 每一個多項式都可以被某些多項式組合出來、 而且「表示法唯一」。 <!-- eng start --> The following examples demonstrate that polynomials have the similar behavior as the basis: Every polynomial can represented as the linear combination of some polynomials, and the representation is unique. <!-- eng end --> ##### Exercise 3(a) 證明每一個二次多項式 $f(x)$ 都可以寫成 $c_0 + c_1(x-1) + c_2(x-1)^2$ 的樣子﹐ 而且 $c_0,c_1,c_2$ 的選擇唯一。 <!-- eng start --> Show that every polynomial $f(x)$ of degree at most $2$ can be written as $c_0 + c_1(x-1) + c_2(x-1)^2$, and the choice of $c_0, c_1, c_2$ is unqiue. <!-- eng end --> :::warning - [x] Nice! But $c_0,c_1,c_2$ are coefficients but not vectors, so the sentence Write $c_0$, $c_1$, and $c_2$ as $\begin{bmatrix}0\\0\\1\end{bmatrix},\begin{bmatrix}0\\1\\-1\end{bmatrix},\begin{bmatrix}1\\-2\\1\end{bmatrix}.$ does not make sense. Try the following: Expand the polynomial. Then we can get $$ \begin{aligned} & c_0 (0x^2 + 0x + 1) + \\ & c_1(0x^2 + x - 1) + \\ & c_2(x^2 - 2x + 1). \end{aligned} $$ By recording the coefficients of $x^2$, $x$, and $1$ as a vector, we get three vectors $\begin{bmatrix}0\\0\\1\end{bmatrix},\begin{bmatrix}0\\1\\-1\end{bmatrix},\begin{bmatrix}1\\-2\\1\end{bmatrix}$ controled by $c_0$, $c_1$, and $c_2$, respectively. - [x] Since $A$ is nonsingular, for any $\bb\in\mathbb{R}^3$, the equation $A\bx = \bb$ has a unique solution. Equivalently, for any polynomial $f$ of degree at most $2$, the equality $c_0 + c_1(x-1) + c_2(x-1)^2 = f(x)$ has a unique solution. - [x] The $\ker(A)=\{0\}$, we know that the $c_0$, $c_1$, and $c_2$ are linear independent. --> Since $\ker(A)=\{0\}$, we know that the columns of $A$ are linear independent. ::: ##### <font color="#f00">**Answer:**</font> Expand the polynomial. Then we can get $$ \begin{aligned} & c_0 (0x^2 + 0x + 1) + \\ & c_1(0x^2 + x - 1) + \\ & c_2(x^2 - 2x + 1). \end{aligned} $$ By recording the coefficients of $x^2$, $x$, and $1$ as a vector, we get three vectors $\begin{bmatrix}0\\0\\1\end{bmatrix},\begin{bmatrix}0\\1\\-1\end{bmatrix},\begin{bmatrix}1\\-2\\1\end{bmatrix}$ controled by $c_0$, $c_1$, and $c_2$, respectively. Let $A$ be the matrix $$\begin{bmatrix} 0 & 0 & 1\\ 0 & 1 & -2\\ 1 & -1 & 1\\ \end{bmatrix}. $$ Since $\ker(A)=\{\bzero\}$, we know that the columns of $A$ are linear independent. Since $A$ is nonsingular, for any $\bb\in\mathbb{R}^3$, the equation $A\bx = \bb$ has a unique solution. Equivalently, for any polynomial $f$ of degree at most $2$, the equality $c_0 + c_1(x-1) + c_2(x-1)^2 = f(x)$ has a unique solution. --- ##### Exercise 3(b) 令 $$ \begin{aligned} f_1(x) &= \frac{(x-2)(x-3)}{(1-2)(1-3)}, \\ f_2(x) &= \frac{(x-1)(x-3)}{(2-1)(2-3)}, \\ f_3(x) &= \frac{(x-1)(x-2)}{(3-1)(3-2)}. \\ \end{aligned} $$ 證明每一個二次多項式 $f(x)$ 都可以寫成 $c_1f_1(x) + c_2f_2(x) + c_3f_3(x)$ 的樣子﹐ 而且 $c_1,c_2,c_3$ 的選擇唯一。 <!-- eng start --> Let $$ \begin{aligned} f_1(x) &= \frac{(x-2)(x-3)}{(1-2)(1-3)}, \\ f_2(x) &= \frac{(x-1)(x-3)}{(2-1)(2-3)}, \\ f_3(x) &= \frac{(x-1)(x-2)}{(3-1)(3-2)}. \\ \end{aligned} $$ Show that every polynomial $f(x)$ of degree at most $2$ can be written as $c_1f_1(x) + c_2f_2(x) + c_3f_3(x)$, and the choice of $c_1, c_2, c_3$ is unqiue. <!-- eng end --> :::warning - [x] When $x=1$, we have $f_1(x)=1, f_2(x)=0, f_3(x)=0.$ When $x=2$, we have $f_1(x)=0, f_2(x)=1, f_3(x)=0$. When $x=3$, we have $f_1(x)=0, f_2(x)=0, f_3(x)=1.$ - [x] It is not clear yet what is the meaning of independence. For this problem, you just have to solve $c_1 = f(1)$, $c_2 = f(2)$, and $c_3 = f(3)$. ::: ##### <font color="#f00">**Answer:**</font> From the equation above, we found some properties by setting $x=1, 2, 3.$ When $x=1$, we have $f_1(x)=1, f_2(x)=0, f_3(x)=0,$ When $x=2$, we have $f_1(x)=0, f_2(x)=1, f_3(x)=0,$ When $x=3$, we have $f_1(x)=0, f_2(x)=0, f_3(x)=1.$ In order to prove that there are unique $c_1, c_2, c_3$ in real numbers such that $f(x) = c_1f_1(x) + c_2f_2(x) + c_3f_3(x)$, we can solve $c_1 = f(1)$, $c_2 = f(2)$, and $c_3 = f(3)$, so we know that $f_1(x), f_2(x), f_3(x)$ are independent and they are a basis of all polynomials $f(x)$ of degree at most $2$. --- ##### Exercise 4 執行以下程式碼。 其中 $B$ 為 $A$ 的反矩陣。 令 $S = \{\bu_1,\bu_2,\bu_3\}$ 為 $A$ 的各行向量。 因為 $A$ 可逆﹐所以 $S$ 為 $\mathbb{R}^3$ 的一組基底。 也就是說﹐每一個 $\mathbb{R}^3$ 中的向量都可以用 $S$ 中的向量組合出來﹐而且組合方法唯一。 <!-- eng start --> Run the code below. Let $B$ be the inverse of $A$ and $S = \{\bu_1,\bu_2,\bu_3\}$ the columns of $A$. Since $A$ is invertible, so $S$ is a basis of $\mathbb{R}^3$. That is, every vector in $\mathbb{R}^3$ can be written as a linear combination of $S$, and the representation is unique. <!-- eng end --> ```python ### code set_random_seed(0) A = random_good_matrix(3,3,3) B = A.inverse() print("A =") show(A) print("B =") show(B) ``` 令`set_random_seed(0)`得 $A = \begin{bmatrix} 1 & 3 & 5\\ -5 & -14 & -30\\ -15 & -42 & -89 \end{bmatrix},B = \begin{bmatrix} -14 & 57 & -20\\ 5 & -14 & 5\\ 0 & -3 & 1 \end{bmatrix}$. ##### Exercise 4(a) 令 $\be_1,\be_2,\be_3$ 分別為 $I_3$ 的三個行向量。 對每一個 $i = 1,2,3$﹐求出 $\be_i$ 寫成 $S$ 的線性組合的表示法。 <!-- eng start --> Let $\be_1, \be_2, \be_3$ be the columns of $I_3$. For each $i = 1, 2, 3$, write $\be_i$ as a linear combination of $S$. <!-- eng end --> :::warning - [x] So ==space== Otherwise, it is nice. ::: ##### <font color="#f00">**Answer:**</font> Because $B$ is the inverse of $A$, so $$ \begin{aligned} AB&=A\begin{bmatrix} | & | & |\\ {\bf b}_1 & {\bf b}_2 & {\bf b}_3\\ | & | & |\\ \end{bmatrix}\\\\ &=\begin{bmatrix} | & | & |\\ {\bf e}_1 & {\bf e}_2 & {\bf e}_3\\ | & | & |\\ \end{bmatrix}\\\\ &=I_3. \end{aligned} $$ So $A{\bf b}_i = {\bf e}_i$ $$ \begin{cases} {\bf e}_1 = -14{\bf u}_1 + 5{\bf u}_2,\\ {\bf e}_2 = 57{\bf u}_1 - 14{\bf u}_2 - 3{\bf u}_3,\\ {\bf e}_3 = -20{\bf u}_1 + 5{\bf u}_2 + {\bf u}_3. \end{cases} $$ --- ##### Exercise 4(b) 令 $\bb = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$。 求出 $\bb$ 寫成 $S$ 的線性組合的表示法。 <!-- eng start --> Let $\bb = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Write $\bb$ as a linear combination of $S$. <!-- eng end --> ##### <font color="#f00">**Answer:**</font> $$ \begin{aligned} {\bf b} &= {\bf e}_1 + {\bf e}_2 + {\bf e}_3\\ &= 23{\bf u}_1 - 4{\bf u}_2 - 2{\bf u}_3。 \end{aligned} $$ :::info collaboration: 1 4 problem: 4 extra: 0.5 moderator: 1 quality control: 1 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully