or
or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up
Syntax | Example | Reference | |
---|---|---|---|
# Header | Header | 基本排版 | |
- Unordered List |
|
||
1. Ordered List |
|
||
- [ ] Todo List |
|
||
> Blockquote | Blockquote |
||
**Bold font** | Bold font | ||
*Italics font* | Italics font | ||
~~Strikethrough~~ | |||
19^th^ | 19th | ||
H~2~O | H2O | ||
++Inserted text++ | Inserted text | ||
==Marked text== | Marked text | ||
[link text](https:// "title") | Link | ||
 | Image | ||
`Code` | Code |
在筆記中貼入程式碼 | |
```javascript var i = 0; ``` |
|
||
:smile: | ![]() |
Emoji list | |
{%youtube youtube_id %} | Externals | ||
$L^aT_eX$ | LaTeX | ||
:::info This is a alert area. ::: |
This is a alert area. |
On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?
Please give us some advice and help us improve HackMD.
Do you want to remove this version name and description?
Syncing
xxxxxxxxxx
西爾維斯特矩陣、結式
This work by Jephian Lin is licensed under a Creative Commons Attribution 4.0 International License.
\(\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}\)
Main idea
Let \(p\) and \(q\) be two polynomials.
The greatest common divisor of \(p\) and \(q\) is the polynomial \(g\) of largest degree such that \(g \mid p\) and \(g\mid q\).
This polynomial is unique up to scalar multiplication, so usually we let \(\gcd(p,q)\) be the one with leading coefficeint \(1\).
By the Euclidean algorithm, it is known that the following two sets are equal.
\[\{ap + bq: a,b\in \mathcal{P}\} = \{ag: a\in\mathcal{P}\}, \] where \(=\mathcal{P}\) is the set of all polynomials.
A refined version is as follows.
Let \(p\) and \(q\) be two polynomials of degree \(m\) and \(n\), respectively.
Then
\[\{ap + bq \in\mathcal{P}_{m+n}: a\in\mathcal{P}_{n-1},b\in\mathcal{P}_{m-1}\} = \{ag \in\mathcal{P}_{m+n}: a\in\mathcal{P}\}. \]
Given two polynomials \(p, q\) of degrees \(m,n\), consider the function
\[\begin{array}{rccc} f : & \mathcal{P}_{n-1} \times \mathcal{P}_{m-1} & \rightarrow & \mathcal{P}_{m+n-1} \\ & (a,b) & \mapsto & ap + bq \\ \end{array}, \] which is linear.
Thus,
\[\operatorname{range}(f) = \{ap + bq \in\mathcal{P}_{m+n-1}: a\in\mathcal{P}_{n-1},b\in\mathcal{P}_{m-1}\} = \{ag \in\mathcal{P}_{m+n-1}: a\in\mathcal{P}\}, \] where \(g = \gcd(p,q)\).
Therefore, \(f\) is surjective if and only if \(\gcd(p,q) = 1\).
Let \(\alpha_q = \{1,\ldots, x^{n-1}\}\) and \(\alpha_q = \{1,\ldots, x^{m-1}\}\) be the standard bases of \(\mathcal{P}_{n-1}\) and \(\mathcal{P}_{m-1}\).
Let \[\alpha = \{(a,0): a\in\alpha_p\} \cup \{(0,b) : b\in\alpha_q\}. \]
Then \(\alpha\) is a basis of \(\mathcal{P}_{n-1}\times\mathcal{P}_{m-1}\).
On the other hand, let \(\beta\) be the standard basis of \(\mathcal{P}_{m+n-1}\).
Construct the \((m + n)\times (m + n)\) matrix
\[S_{p,q} = \begin{bmatrix} | & ~ & | & | & ~ & | \\ [p]_\beta & \cdots & [x^{n-1}p]_\beta & [q]_\beta & \cdots & [x^{m-1}q]_\beta \\ | & ~ & | & | & ~ & | \\ \end{bmatrix}. \]
Then \(S_{p,q} = [f]_\alpha^\beta\) and is called the Sylvester matrix of \(p\) and \(q\).
The determinant of \(S_{p,q}\) is called the resultant of \(p\) and \(q\), denoted as \(\operatorname{res}(p,q)\).
(We have not learnt the properties of the determinant, but at least it make senses when \(S_{p,q}\) is a small matrix.)
Let \(p,q\) be two polynomials.
Let \(S_{p,q}\) their Sylvester matrix and \(\operatorname{res}(p,q)\) the resultant.
Then the following are equivalent:
Side stories
Experiments
Exercise 1
執行以下程式碼。
set_random_seed(0)
\(p= 5x^2 + 3x - 4\)
\(q=3x^3 - 5x - 5\)
\(\alpha = \{(1,0), (x,0), (x^2,0), (0,1), (0,x)\}\)
\(\beta = \{1, x, x^2, x^3, x^4\}\)
\[S_{p,q}=\begin{bmatrix} -4&0&0&-5&0\\ 3&-4&0&-5&-5\\ 5&3&-4&0&-5\\ 0&5&3&3&0\\ 0&0&5&0&3 \end{bmatrix} \]
Exercise 1(a)
寫出 \(\mathcal{P}_2\times\mathcal{P}_1\) 的標準基底 \(\alpha\)、
以及 \(\mathcal{P}_4\)。
\(Ans\)
由 \(\mathcal{P}_2\) 的標準基底 \(\alpha_2=\{1, x, x^2\}\),
和 \(\mathcal{P}_1\) 的標準基底 \(\alpha_1=\{1,x\}\),
而 \(\mathcal{P}_2\times\mathcal{P}_1\) 的標準基底 \(\alpha = \{(a,0): a\in\alpha_2\} \cup \{(0,b) : b\in\alpha_1\}\)。
得知 \(\alpha= \{(1,0), (x,0), (x^2,0), (0,1), (0,x)\}\),
\(\mathcal{P}_4\) 的標準基底為 \(\{1,x,x^2,x^3,x^4\}\)。
Exercise 1(b)
寫出 \(p,q\) 的西爾維斯特矩陣 \(A\)。
\(Ans\)
西爾維斯特矩陣為 \[S_{p,q} = \begin{bmatrix} | & ~ & | & | & ~ & | \\ [p]_\beta & \cdots & [x^{n-1}p]_\beta & [q]_\beta & \cdots & [x^{m-1}q]_\beta \\ | & ~ & | & | & ~ & | \\ \end{bmatrix}. \]
將 \(n=3\) , \(m=2\) , \(p= 3x^3 - 5x - 5\) , \(q=5x^2 + 3x - 4\) 代入,
得到 \(p,q\) 的西爾維斯特矩陣
\(A=\begin{bmatrix} -4&0&0&-5&0\\ 3&-4&0&-5&-5\\ 5&3&-4&0&-5\\ 0&5&3&3&0\\ 0&0&5&0&3 \end{bmatrix}\)。
Exercise 1©
判斷 \(p,q\) 是否互質。
\(Ans\)
是,\(S_{p,q}\) 經過列運算之後,發現沒有自由變數,表示此矩陣可逆,也就代表 \(\gcd(p,q) = 1\)
得 \(p,q\) 互質。
Exercises
Exercise 2
對以下的 \(p\) 和 \(q\)﹐利用西爾維斯特矩陣判斷它們是否互質。
Exercise 2(a)
\(p = 1 + 2x + x^2\)、
\(q = 2 + x\)。
Ans \[ S_{p,q}=\begin{bmatrix} 1&2&0\\ 2&1&2\\ 1&0&1 \end{bmatrix} \] 由於 \(\det(S_{p,q})=1\neq 0\),說明了 \(S_{p,q}\) 為一可逆矩陣,也代表 \(\gcd(p,q) = 1\),因此多項式 \(p\) 跟 \(q\) 互質。
Exercise 2(b)
\(p = 1 + 2x + x^2\)、
\(q = 2 + 3x + x^2\)。
ANS
\[ S_{p,q} = \begin{bmatrix} 1&0&2&0\\ 2&1&3&2\\ 1&2&1&3\\ 0&1&0&1 \end{bmatrix} \]
針對高階的矩陣,我們可以利用拉普拉斯展開法降階以獲取行列式值。
由於 \(\det(S_{p,q})=0\),說明了 \(S_{p,q}\) 為一不可逆矩陣,也代表 \(\gcd(p,q)\neq 1\),因此多項式 \(p\) 跟 \(q\) 不是互質。
Exercise 2©
\(p = 1 + 2x + x^2\)、
\(q = 6 + 11x + 6x^2 + x^3\)。
ANS
\[ S_{p,q}=\begin{bmatrix} 1&0&0&6&0\\ 2&1&0&11&6\\ 1&2&1&6&11\\ 0&1&2&1&6\\ 0&0&1&0&1 \end{bmatrix} \] 由於 \(\det(S_{p,q})=0\),說明了 \(S_{p,q}\) 為一不可逆矩陣,也代表 \(\gcd(p,q)\neq 1\) ,因此多項式 \(p\) 跟 \(q\) 不是互質。
Exercise 3
說明西爾維斯特矩陣 \(S_{p,q}\) 就是 \([f]_\alpha^\beta\)。
good
令 \[\begin{array}{rccc} f : & \mathcal{P}_{n-1} \times \mathcal{P}_{m-1} & \rightarrow & \mathcal{P}_{m+n-1} \\ & (a,b) & \mapsto & ap + bq \\ \end{array}, \] 又令 \(\alpha\) 為 \(\mathcal{P}_{n-1} \times \mathcal{P}_{m-1}\) 的基底,而 \(\beta\) 為 \(\mathcal{P}_{m+n-1}\) 的基底。
而 \(\alpha = \{(1,0),(x,0),(x^2,0),...,(x^{n-1},0),(0,1),(0,x),(0,x^2),...,(0,x^{m-1})\}\) 。
接著觀察 \([f]_\alpha^\beta\) 。
依照定義, \([f]_\alpha^\beta\) 為將 \(\alpha\) 內的向量一一代入 \(f\) 並用 \(\beta\) 表示出來的矩陣,即 \[ [f]_\alpha^\beta = \begin{bmatrix} | & | & | & ~ & | & | & ~ & | \\ [f(1,0)]_\beta & [f(x,0)]_\beta & [f(x^2,0)]_\beta & ... & [f(x^{n-1},0)]_\beta & [f(0,1)]_\beta & ... & [f(0,x^{m-1})]_\beta \\ | & | & | & ~& | & | & ~ & | \end{bmatrix}。 \] 而觀察將 \(\alpha\) 內的向量代入 \(f\) 的結果,會發現 \(f(1,0) = p,f(x,0) = px,...,f(x^{n-1},0) = px^{n-1},f(0,1) = q,f(0,x^{m-1} = qx^{m-1})\) ,
則 \[ [f]_\alpha^\beta = \begin{bmatrix} | & ~ & | & | & ~ & | \\ [p]_\beta & \cdots & [x^{n-1}p]_\beta & [q]_\beta & \cdots & [x^{m-1}q]_\beta \\ | & ~ & | & | & ~ & | \\ \end{bmatrix}$ 即 $S_{p,q}. \]
Exercise 4
執行以下程式碼。
嘗試各種不同的 \(p,q\)。
令 \(A\) 為它們的西爾維斯特矩陣﹐
將 \(A\) 左上和右下翻轉後得到 \(B\)。
令 \(R\) 為 \(B\) 的最簡階梯形式矩陣。
觀察 \(\gcd(p,q)\) 和 \(R\) 的關係﹐並說明為什麼。
答:
當 \(p = 1 + x\), \(q = 1 + 2x + x^2\) 時 \[A=\begin{bmatrix} 1&0&1\\ 1&1&2\\ 0&1&1\\ \end{bmatrix},B=\begin{bmatrix} 1&2&1\\ 1&1&0\\ 0&1&1\\ \end{bmatrix},R=\begin{bmatrix} 1&0&-1\\ 0&1&1\\ 0&0&0\\ \end{bmatrix},\gcd(p,q) = x+1 .\]
當 \(p = 1 + x^2\), \(q = 1 + 2x\) 時 \[A=\begin{bmatrix} 1&1&0\\ 0&2&1\\ 1&0&2\\ \end{bmatrix},B=\begin{bmatrix} 2&1&0\\ 0&2&1\\ 1&0&1\\ \end{bmatrix},R=\begin{bmatrix} 1&0&0\\ 0&1&0\\ 0&0&1\\ \end{bmatrix},\gcd(p,q) = 1 .\]
當 \(p = 2 + x\), \(q = 4 + 8x + 3x^2\) 時 \[A=\begin{bmatrix} 2&0&4\\ 1&2&8\\ 0&1&3\\ \end{bmatrix},B=\begin{bmatrix} 3&8&4\\ 1&2&0\\ 0&1&2\\ \end{bmatrix},R=\begin{bmatrix} 1&0&-4\\ 0&1&2\\ 0&0&0\\ \end{bmatrix},\gcd(p,q) = x+2 . \]
矩陣最下方不為零的列,按照順序從高次到低次排序,分別是 \(x^2, x^1, x^0\),填上係數就是 \(p,q\) 的公因式。其中在矩陣 \(R\) 的第一列由上往下到不為零的前一列,填上係數後可以發現皆是 \(\gcd(p,q)\) 的倍式,且在矩陣 \(R\) 中,任一列都是 \(B\) 中列向量的線性組合,其所對應到的多項式皆為 \(ap + bq\) 的形式,所以均是 \(\gcd(p,q)\) 的倍式。而最後一個非零列的次方數最小,所以它就是 \(\gcd(p,q)\)。
Exercise 5
令 \(p,q\) 為兩多項式且 \(g = \gcd(p,q)\)。
證明
\[\{ap + bq: a,b\in \mathcal{P}\} = \{ag: a\in\mathcal{P}\}. \]
一邊是簡單的,\(ap + bp\) 一定是 \(cg\) 的形式。
另一邊要用到除法原理。
這題我直接掛懸賞。
ANS
因為 \(g\) 為 \(p,q\) 公因式,因此我們可令 \({\{ap=g: a\in\mathcal{P}\}}\) ,\({\{bq=g: d\in\mathcal{P}\}}\) ,不會了
目前分數 6.5