Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 奇異值分解 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}}$ ```python from lingeo import random_int_list ``` ## Main idea Continuing the introduction of the singular value decomposition in 314, this section will provide the theoretical foundation of it. ##### Singular value decomposition Let $A$ be an $m\times n$ matrix. Then there are orthonormal bases $\alpha$ and $\beta$ of $\mathbb{R}^n$ and $\mathbb{R}^m$, respectively, such that $$ [f_A]_\alpha^\beta = \Sigma = \begin{bmatrix} \operatorname{diag}(\sigma_1, \ldots, \sigma_r) & O_{r,n-r} \\ O_{m-r,r} & O_{m-r,n-r} \end{bmatrix}, $$ where $\sigma_1\geq\cdots\geq\sigma_r$ and $\operatorname{diag}(\sigma_1,\ldots,\sigma_r)$ is the diagonal matrix with the given diagonal entries. That is, there are $m\times m$ and $n\times n$ orthogonal matrices $U$ and $V$ such that $U^\top AV = \Sigma$ and $A = U\Sigma V^\top$. Recall that $AB$ and $BA$ have the same set of nonzero eigenvalues. (See 506-6.) The values $\sigma_1 \geq \cdots \geq \sigma_r$ are called the **singular values** of $A$. - They are the (positive) square roots of the nonzero eigenvalues of $A\trans A$. - They are the (positive) square roots of the nonzero eigenvalues of $AA\trans$. - They are positive. - There are $r = \rank(A)$ of them. Indeed, the columns of $V$ form an orthonormal eigenbasis of $A\trans A$, while the columns of $U$ form an orthonormal eigenbasis of $AA\trans$. The singular value decomposition of an $m\times n$ matirx can be found by the following steps: 1. Compute an orthonormal eigenbasis $\alpha$ of $A\trans A$. 2. Order the eigenvectors in $\alpha$ by the corresponding eigenvalues in the non-increasing order. Let $\alpha_1$ and $\alpha_2$ be the sets of eigenvectors in $\alpha$ that correspond to positive and zero eigenvalues, respectively. Let $\lambda_1 \geq \cdots \geq \lambda_r$ be the positive eigenvalues and $\sigma_i = \sqrt{\lambda_i}$ for $i = 1,\ldots, r$. 3. Let $\beta_1 = \{\frac{1}{\sigma_i}A\bv: \bv \in \alpha_1\}$. Let $\beta_0$ be an orthonormal basis of $\ker(AA\trans)$. Let $\beta = \beta_1 \cup \beta_0$. Thus, the desired eigenbasis are found. For the construction of the matrices. - Construct $V$ by using $\alpha$ as the columns vectors. - Construct $U$ by using $\beta$ as the columns vectors. - The singular values are the (positive) square roots of nonzero eigenvalues of $A\trans A$ (or $AA\trans$). ## Side stories - $AB$ and $BA$ have the same nonzero eigenvalues - image compression - Moore–Penrose pseudo inverse (TBD) ## Experiments ##### Exercise 1 執行以下程式碼。 令 $\alpha = \{\bv_1, \ldots, \bv_n\}$ 為 $\mathbb{R}^n$ 中的垂直標準基、 $\beta = \{\bu_1, \ldots, \bu_m\}$ 為 $\mathbb{R}^m$ 中的垂直標準基。 已知一線性函數 $f = \mathbb{R}^n \rightarrow \mathbb{R}^m$ 具有 $[f]_\alpha^\beta = \Sigma$ 的性質。 ```python ### code set_random_seed(0) print_ans = False r = choice([1,2,3]) while True: sigs = list(map(lambda k: abs(k), random_int_list(r))) sigs.sort(reverse=True) if sigs[-1] > 0: break m,n = 3,4 Sigma = zero_matrix(m,n) for i in range(r): Sigma[i,i] = sigs[i] cs = random_int_list(n) print("m,n = %s,%s"%(m, n)) pretty_print(LatexExpr(r"\Sigma ="), Sigma) print("c_1, ..., c_n =", cs) if print_ans: rs = [Sigma[i,i] for i in range(m)] cvs = " + ".join(r"(%s)\mathbf{v}_{%s}"%(cs[i], i + 1) for i in range(n)) fcvs = " + ".join(r"(%s)\mathbf{u}_{%s}"%(rs[i] * cs[i], i + 1) for i in range(m)) pretty_print(LatexExpr(cvs + "=" + fcvs)) print("kernel of f is the span of v%s ~ vn"%(r+1)) print("range of f is the span of u1 ~ u%s"%(r)) ``` $m,n = 3,4$ $$Σ=\begin{bmatrix} 3 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\end{bmatrix}. $$ $c_1, ..., c_n = [5, -5, -5, 0]$ ##### Exercise 1(a) 將 $f(c_1\bv_1 + \cdots + c_n\bv_n)$ 寫成 $\beta$ 的線性組合。 **[由廖緯程同學提供]** 直接計算 $$ \begin{aligned} \Sigma \begin{bmatrix} c_1\\c_2\\c_3\\c_4 \end{bmatrix} &= \begin{bmatrix} 3 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5\\-5\\-5\\0 \end{bmatrix}\\ &= \begin{bmatrix} 15\\0\\0 \end{bmatrix}. \end{aligned} $$ 所以 $f(c_1 \bv_1 + \cdots + c_n \bv_n) = 15 \bu_1$. ##### Exercise 1(b) 用 $\alpha$ 中的向量來描述 $\ker(f)$。 **[由廖緯程同學提供]** $\alpha$ 是標準基,而且 $\Sigma$ 中的行向量中只有第一行不為零向量,所以只有第一個 $\alpha$ 中的基底,也就是 $\bv_1$ 不在 $\ker(f)$ 裡面。 所以 $\ker(f)$ 由剩下的基底張開,即 $\ker(f) = \vspan( \{ \bv_2, \bv_3, \bv_4 \})$. ##### Exercise 1(c) 用 $\beta$ 中的向量來描述 $\range(f)$。 **[由廖緯程同學提供]** 任意取 $\mathbb{R}^4$ 中的向量, $$ \bv = \begin{pmatrix} a\\b\\c\\d \end{pmatrix}. $$ 直接計算 $$ f(\bv) = \begin{pmatrix} 3a\\0\\0 \end{pmatrix} = 3a \bu_1. $$ 所以只要 $\bu_1$ 就可以張成 $\range(f)$,即 $\range(f) = \vspan(\{ \bu_1 \})$. ## Exercises ##### Exercise 2 求以下矩陣的奇異值分解。 ##### Exercise 2(a) $$ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}. $$ **[由廖緯程同學提供]** 先找出 $A \trans A$ 的 orthonormal eigenbasis $\alpha$, $$ A \trans A = \begin{bmatrix} 2 & 2 & 2\\ 2 & 2 & 2\\ 2 & 2 & 2 \end{bmatrix} $$ 可以觀察到 $\nul(A) = 2$,所以有兩個特徵值為 $0$,而且 $\tr(A) = 6$,所以特徵值分別為 $6, 0, 0$. 經過一些計算可以得到 $$ \ker(A \trans A - 6I) = \vspan\left\{ \begin{pmatrix} \frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{3}} \end{pmatrix} \right\}. $$ 及 $$ \ker(A \trans A) = \vspan\left\{ \begin{pmatrix} -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}\\0 \end{pmatrix}, \begin{pmatrix} -\frac{1}{\sqrt{2}}\\0\\ \frac{1}{\sqrt{2}} \end{pmatrix} \right\}. $$ 所以, $$ \alpha = \left\{ \begin{pmatrix} \frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{3}} \end{pmatrix}, \begin{pmatrix} -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}\\0 \end{pmatrix}, \begin{pmatrix} -\frac{1}{\sqrt{2}}\\0\\ \frac{1}{\sqrt{2}} \end{pmatrix} \right\},\\ \sigma_1 = \sqrt{6}, \sigma_2 = \sigma_3 = 0. $$ $\alpha_1$ 是由 $\alpha$ 中對應的特徵值為正的特徵向量組成,找 $\beta = \beta_1 \cup \beta_0$,先找 $\beta_1$, $$ \begin{aligned} \beta_1 &= \{ \frac{1}{\sigma_i} A \bv_i : \bv_i \in \alpha_1 \}\\ &= \{ \frac{1}{\sqrt{6}} A \bv_1 \}\\ &= \{ \begin{pmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{pmatrix} \}. \end{aligned} $$ 再找 $\beta_0$,也就是 $A A \trans$ 的 orthonormal eigenbasis, $$ A A \trans = \begin{bmatrix} 3 & 3\\ 3 & 3 \end{bmatrix}, $$ 特徵值為 $6,0$, $$ \beta_0 = \{ \begin{pmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{pmatrix} \}. $$ $\beta = \beta_1 \cup \beta_0$, $$ \beta = \{ \begin{pmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{pmatrix} \} $$ $V$ 的行向量是 $\alpha$,$U$ 的行向量是 $\beta$, $$ \begin{aligned} V &= \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1} {\sqrt{2}}\\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{3}} & 0 & \frac{1}{\sqrt{2}}\\ \end{bmatrix}\\ U &= \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}\\ \Sigma &= \begin{bmatrix} \sqrt{6} & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \end{aligned} $$ 驗證一下, $$ U \Sigma V \trans = \begin{bmatrix} 1 & 1 & 1\\ 1 & 1 & 1 \end{bmatrix} = A. $$ ##### Exercise 2(b) $$ A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}. $$ **[由廖緯程同學提供]** $V$ 的行向量由 $\alpha$ 組成,$\alpha$ 是 $A \trans A$ 的 orthonormal eigenbasis. $$ \begin{aligned} A \trans A &= \begin{bmatrix} 1 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 1 \end{bmatrix} \end{aligned} $$ 因為 $\nul(A \trans A) = 1$,所以它有一個特徵值為 $0$. 利用柯西交錯定理觀察去掉第一行列的 principal submatrix,剛好是 $I_2$,特徵值為 $1, 1$,所以 $A \trans A$ 有一個特徵值為 $1$. 最後,$\tr(A \trans A) = 3 = 0 + 1 + 2$,所以 $A \trans A$ 的特徵值為 $2, 1, 0$. $$ \begin{aligned} \lambda_1 = 2,\\ \lambda_2 = 1,\\ \lambda_3 = 0. \end{aligned} $$ 分別計算 $\ker(A \trans A - \lambda_i I)$ 的orthonormal basis, $$ \begin{aligned} \bv_1 &= \begin{pmatrix} \frac{1}{\sqrt{2}}\\ 0\\ \frac{1}{\sqrt{2}} \end{pmatrix},\\ \bv_2 &= \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix},\\ \bv_3 &= \begin{pmatrix} -\frac{1}{\sqrt{2}}\\ 0\\ \frac{1}{\sqrt{2}} \end{pmatrix},\\ \alpha &= \{ \begin{pmatrix} \frac{1}{\sqrt{2}}\\ 0\\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix}, \begin{pmatrix} -\frac{1}{\sqrt{2}}\\ 0\\ \frac{1}{\sqrt{2}} \end{pmatrix} \},\\ V &= \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}\\ 0 & 1 & 0\\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}. \end{aligned} $$ $\alpha_1$ 是將 $\alpha$ 中對應特徵值為正的特徵向量取出來, $$ \alpha_1 = \left\{ \begin{pmatrix} \frac{1}{\sqrt{2}}\\ 0\\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix} \right\}. $$ $\sigma_i = \sqrt{\lambda_i}$,$\lambda_i$ 只取正的, $$ \begin{aligned} \sigma_1 &= \sqrt{2},\\ \sigma_2 &= 1,\\ \Sigma &= \begin{bmatrix} \operatorname{diag}(\sigma_1, \ldots, \sigma_r) & O_{r,n-r} \\ O_{m-r,r} & O_{m-r,n-r} \end{bmatrix}\\ &= \begin{bmatrix} \sqrt{2} & 0 & 0\\ 0 & 1 & 0 \end{bmatrix}. \end{aligned} $$ $\beta_1 = \{\frac{1}{\sigma_i}A\bv: \bv \in \alpha_1\}$, $$ \beta_1 = \left\{ \begin{pmatrix} 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 1 \end{pmatrix} \right\}. $$ $U$ 的行向量由 $\beta_1$ 組成, $$ U = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}. $$ 驗證一下, $$ \begin{aligned} U \Sigma V \trans &= \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 & 0\\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\\ 0 & 1 & 0\\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}\\ &= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}\\ &= A. \end{aligned} $$ ##### Exercise 3 依照以下步驟求出 $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \end{bmatrix} $$ 的奇異值分解。 ##### Exercise 3(a) 求出 $A\trans A$ 的所有特徵值 $\lambda_1 \geq \cdots \geq \lambda_4$ 及其對應的一組垂直單位長的特徵基底 $\alpha = \{\bv_1,\ldots, \bv_4\}.$ **[由廖緯程同學提供]** $$ A \trans A = \begin{bmatrix} 2 & 2 & 0 & 0\\ 2 & 2 & 0 & 0\\ 0 & 0 & 2 & 2\\ 0 & 0 & 2 & 2 \end{bmatrix} $$ 直接求特徵多項式的根, $$ \begin{aligned} \det(A \trans A - xI) &= x^4 - 8x^3 + 16x^2\\ &= x^2(x - 4)^2. \end{aligned} $$ 所以 $A \trans A$ 的特徵值為 $4, 4, 0, 0$. 分別求出特徵向量後標準化可以得到 $\alpha$, $$ \alpha = \left\{ \begin{pmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}\\ 0\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 0\\ \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}\\ 0\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 0\\ -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{pmatrix} \right\}. $$ ##### Exercise 3(b) 求出 $AA\trans$ 的所有特徵值 $\mu_1 \geq \mu_2$ 及其對應的一組垂直單位長的特徵基底 $\beta = \{\bu_1, \bu_2\}$。 **[由廖緯程同學提供]** $$ A A \trans = \begin{bmatrix} 4 & 0\\ 0 & 4 \end{bmatrix} $$ 特徵值是 $4, 4$, $$ \beta =\{ \begin{pmatrix} 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 1 \end{pmatrix} \}. $$ ##### Exercise 3(c) 令 $\sigma_1 = \sqrt{\lambda_1}$、$\sigma_2 = \sqrt{\lambda_2}$。 判斷以下敘述是否正確: 1. $\lambda_1 = \mu_1$ 且 $\lambda_2 = \mu_2$。 2. $A\bv_1 = \sigma\bu_1$ 且 $A\bv_2 = \sigma_2\bu_2$。 3. $A\bv_1$ 是 $AA\trans$ 的特徵向量且特徵值為 $\lambda_1$。 $A\bv_2$ 是 $AA\trans$ 的特徵向量且特徵值為 $\lambda_2$。 4. $A\bv_1$ 的長度為 $\sigma_1$、$A\bv_2$ 的長度為 $\sigma_2$。 **[由廖緯程同學提供]** 1. 正確。$\lambda_1 = \lambda_2 = \mu_1 = \mu_2 = 4$. 2. 不見得相等。 $A \bv_1 \neq \sigma_1 \bu_1$, $$ \begin{aligned} A \bv_1 &= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \end{bmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}\\ 0\\ 0 \end{pmatrix}\\ &= \begin{pmatrix} \sqrt{2}\\ \sqrt{2} \end{pmatrix}\\ &\neq 2 \begin{pmatrix} 1\\ 0 \end{pmatrix}\\ &= \sigma_1 \bu_1. \end{aligned} $$ $A \bv_2 \neq \sigma_2 \bu_2$, $$ \begin{aligned} A \bv_2 &= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \end{bmatrix} \begin{pmatrix} 0\\ 0\\ \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{pmatrix}\\ &= \begin{pmatrix} \sqrt{2}\\ -\sqrt{2} \end{pmatrix}\\ &\neq 2 \begin{pmatrix} 0\\ 1 \end{pmatrix}\\ &= \sigma_2 \bu_2. \end{aligned} $$ 3. 正確。 $A\bv_1$ 是 $AA\trans$ 的特徵向量且特徵值為 $\lambda_1$, $$ \begin{aligned} A A \trans A \bv_1 &= \begin{bmatrix} 4 & 0\\ 0 & 4 \end{bmatrix} \begin{pmatrix} \sqrt{2}\\ \sqrt{2} \end{pmatrix}\\ &= \begin{pmatrix} 4 \sqrt{2}\\ 4 \sqrt{2} \end{pmatrix}\\ &= 4 \begin{pmatrix} \sqrt{2}\\ \sqrt{2} \end{pmatrix}\\ &= \lambda_1 A \bv_1. \end{aligned} $$ $A\bv_2$ 是 $AA\trans$ 的特徵向量且特徵值為 $\lambda_2$, $$ \begin{aligned} A A \trans A \bv_2 &= \begin{bmatrix} 4 & 0\\ 0 & 4 \end{bmatrix} \begin{pmatrix} \sqrt{2}\\ -\sqrt{2} \end{pmatrix}\\ &= \begin{pmatrix} 4 \sqrt{2}\\ -4 \sqrt{2} \end{pmatrix}\\ &= 4 \begin{pmatrix} \sqrt{2}\\ -\sqrt{2} \end{pmatrix}\\ &= \lambda_2 A \bv_2. \end{aligned} $$ 4. 正確。 $A\bv_1$ 的長度為 $\sigma_1$, $$ \begin{aligned} ||{A \bv_1}|| &= \sqrt{2 + 2}\\ &= 2\\ &= \sigma_1. \end{aligned} $$ $A\bv_2$ 的長度為 $\sigma_2$, $$ \begin{aligned} ||{A \bv_2}|| &= \sqrt{2 + 2}\\ &= 2\\ &= \sigma_1. \end{aligned} $$ ##### Exercise 3(d) 將 $\beta$ 做適當的修正使得 $\alpha$、$\beta$ 可以將 $A$ 奇異值分解。 **[由廖緯程同學提供]** 令 $$ \begin{aligned} \beta &= \left\{ \frac{1}{\sigma_1} A \bv_1, \frac{1} {\sigma_2} A \bv_2 \right\}\\ &= \left\{ \begin{pmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}} \end{pmatrix} \right\},\\ \Sigma &= \begin{bmatrix} \operatorname{diag}(\sigma_1, \ldots, \sigma_r) & O_{r,n-r} \\ O_{m-r,r} & O_{m-r,n-r} \end{bmatrix}\\ &= \begin{bmatrix} 2 & 0 & 0 & 0\\ 0 & 2 & 0 & 0 \end{bmatrix}. \end{aligned} $$ $U$ 的行向量由 $\beta$ 組成,$V$ 的行向量由 $\alpha$ 組成,驗證一下, $$ \begin{aligned} U \Sigma V \trans &= \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 & 0\\ 0 & 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0\\ 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0\\ 0 & 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}\\ &= \begin{bmatrix} 1 & 1 & 1 & 1\\ 1 & 1 & -1 & -1 \end{bmatrix}\\ &= A. \end{aligned} $$ ##### Exercise 4 在 506-6 我們用連續性論證來說明 $AB$ 和 $BA$ 有相同的非零特徵值集合。 這裡提供另一種方式來證明。 ##### Exercise 4(a) 令 $$ X = \begin{bmatrix} AB & A \\ O & O \end{bmatrix}, \quad Y = \begin{bmatrix} O & A \\ O & BA \end{bmatrix}. $$ 參考 408 寫出「把 $X$ 的上區塊左乘 $B$ 加到下區塊」的區塊基本矩陣 $E$。 並驗證 $EXE^{-1} = Y$。 **[由廖緯程同學提供]** 令 $$ E = \begin{bmatrix} I_m & O\\ B & I_n \end{bmatrix}. $$ $E$ 是下三角矩陣而且滿秩,所以 $E$ 可逆. 驗證 $EX = YE$. $$ \begin{aligned} EX &= \begin{bmatrix} I_m & O\\ B & I_n \end{bmatrix} \begin{bmatrix} AB & A\\ O & O \end{bmatrix}\\ &= \begin{bmatrix} AB & A\\ BAB & BA \end{bmatrix}\\ &= \begin{bmatrix} O & A\\ O & BA \end{bmatrix} \begin{bmatrix} I_m & O\\ B & I_n \end{bmatrix}\\ &= YE. \end{aligned} $$ ##### Exercise 4(b) 證明 $AB$ 和 $BA$ 有相同的非零特徵值集合。 **[由廖緯程同學提供]** 考慮 $X$ 的特徵多項式, $$ \begin{aligned} p_X(x) &= \det(X - xI_{m + n})\\ &=\det( \begin{bmatrix} AB - xI_m & A\\ O & -xI_n \end{bmatrix})\\ &= \det(AB - xI_m) \det(-xI_n)\\ &= p_{AB}(x) \cdot (-x)^n. \end{aligned} $$ 考慮 $Y$ 的特徵多項式, $$ \begin{aligned} p_Y(x) &= \det(Y - xI_{m + n})\\ &=\det( \begin{bmatrix} -xI_m & A\\ O & BA - xI_n \end{bmatrix})\\ &= \det(-xI_m) \det(BA - xI_n)\\ &= p_{BA}(x) \cdot (-x)^m. \end{aligned} $$ 因為 $EXE^{-1} = Y$,所以 $X$ 相似於 $Y$,$X,Y$ 有相同的特徵多項式, $$ p_{AB}(x) \cdot (-x)^n = p_{BA}(x) \cdot (-x)^m. $$ 可以看的出來 $p_{BA}$ 與 $p_{AB}$ 有相同的非零根,所以 $AB$ 與 $BA$ 有相同的非零特徵值. ##### Exercise 5 執行以下程式碼,並用文字解釋輸出的各項是什麼。 ```python ### code import numpy as np arr = np.array([ [1,1,1], [1,1,1] ]) np.linalg.svd(arr) ``` **[由廖緯程同學提供]** 執行結果, ```python (array([[-0.70710678, -0.70710678], [-0.70710678, 0.70710678]]), array([2.44948974e+00, 1.15875172e-16]), array([[-5.77350269e-01, -5.77350269e-01, -5.77350269e-01], [-8.16496581e-01, 4.08248290e-01, 4.08248290e-01], [-6.99362418e-17, -7.07106781e-01, 7.07106781e-01]])) ``` 相當於, $$ \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix},\\ \begin{bmatrix} \sqrt{6} & 0 \end{bmatrix},\\ \begin{bmatrix} -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}}\\ -\frac{\sqrt{6}}{3} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}}\\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}. $$ $\sqrt{6}, 0$ 是 ```arr``` 的奇異值,另外兩個都是正交矩陣,所以猜測它們是 ```arr``` 的奇異值分解,驗證看看, $$ \begin{aligned} &\begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{6} & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}}\\ -\frac{\sqrt{6}}{3} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}}\\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}\\ &= \begin{bmatrix} -\sqrt{3} & 0 & 0\\ -\sqrt{3} & 0 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}}\\ -\frac{\sqrt{6}}{3} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}}\\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}\\ &= \begin{bmatrix} 1 & 1 & 1\\ 1 & 1 & 1 \end{bmatrix}.\\ \end{aligned} $$ 所以確實是奇異值分解,而且結果與 Exercise 2(a) 不同,這說明了奇異值分解不唯一. :::info 一般來說奇異值指的是非零的那些數字。所以以這個矩陣來說只有一個奇異值 $\sqrt{6}$。 但為了程式方便起見,會把後面的 $0$ 也都包進來,這樣才能固定第二項輸出陣列的長度。(同時也是數值方法很難判斷一個數字是不是零。) ::: ##### Exercise 6 以下小題解釋如何利用奇異值分解進行影像壓縮(去除雜訊)。 ##### Exercise 6(a) 執行以下程式碼。 選用不同的 `k` 來看看結果有什麼差異。 用文字敘述 `k` 對結果的影響、 並選一個 `k` 是你能接受的最小值。 ```python ### 未壓縮原圖 import numpy as np from PIL import Image r = 10 img = Image.open('incrediville-side.jpg') x,y = img.size img = img.resize((x // r, y // r)).convert("L") img ``` ```python ### 壓縮 k = 10 arr = np.array(img) u,s,vh = np.linalg.svd(arr) arr_compressed = (u[:,:k] * s[:k]).dot(vh[:k,:]) img_compressed = Image.fromarray(arr_compressed.astype('uint8'), 'L') img_compressed ``` :::warning 難得比較有趣的題目,可惜你們無法執行 ::: ##### Exercise 6(b) 令 $A$ 為一 $m\times n$ 矩陣、且 $\rank(A) = r$。 已知 $A = U\Sigma V^\top$ 為其奇異值分解。 令 $\bu_1,\ldots,\bu_{m}$ 為 $U$ 的各行向量、 而 $\bv_1, \ldots, \bv_{n}$ 為 $V$ 的各行向量。 說明 $A$ 可寫成 $$ A = \sum_{i=1}^{r} \sigma_i \bu_i \bv_i\trans. $$ 因此對任意 $k \leq r$ 而言,$A' = \sum_{i=1}^{k} \sigma_i \bu_i \bv_i\trans$ 都可視為 $A$ 的一個逼近。 $Ans:$ $$ A=\begin{bmatrix} | & ~ & | \\ {\bf u}_1 & \cdots & {\bf u}_n \\ | & ~ & | \end{bmatrix} \begin{bmatrix} \operatorname{diag}(\sigma_1, \ldots, \sigma_r) & O_{r,n-r} \\O_{m-r,r} & O_{m-r,n-r} \end{bmatrix} \begin{bmatrix} - & {\bf v}_1^\top & - \\ ~ & \vdots & ~\\ - & {\bf v}_n^\top & - \end{bmatrix}. $$ $A= \sigma_1 \bu_1 \bv_1\trans+\sigma_2 \bu_2 \bv_2\trans+.....+\sigma_k \bu_k \bv_k \trans$ 可以寫成 $A = \sum_{i=1}^{k} \sigma_i \bu_i \bv_i\trans.$ ##### Exercise 6(c) 在矩陣世界裡,我們定義長度平方為 $\|X\|^2 = \tr(X\trans X)$。 因此也可以計算兩矩陣 $X$ 和 $Y$ 的距離為 $\|X - Y\|$。 驗證對每一個 $i$ 都有 $\|\bu_i\bv_i\trans\| = 1$, 並說明 $\|A - A'\|^2 = \sum_{i = k+1}^r \sigma_i^2$。 (因此我們刪除小的奇異值是合理的,並不會改變 $A$ 太多。) **[由廖緯程同學提供]** 因為 $\bu_i, \bv_i$ 長度都是 $1$,即 $\bu_i \trans \bu_i = \bv_i \trans \bv_i = 1$, $$ \begin{aligned} \| \bu_i \bv_i \trans \| &= \sqrt{\tr(\bv_i \bu_i \trans \bu_i \bv_i \trans)}\\ &= \sqrt{\tr(\bv_i \bv_i \trans)}\\ &= \sqrt{1}\\ &= 1. \end{aligned} $$ 對於所有 $i \neq j$,$\bu_i \trans \bu_j = \bv_i \trans \bv_j = \begin{bmatrix}0\end{bmatrix}$,$\tr(\bu_i \bu_i \trans) = \tr(\bv_i \bv_i \trans) = 1$, $$ \begin{aligned} \| A - A' \|^2 &= \tr((A \trans - A' \trans)(A - A'))\\ &= \tr(\sum_{i = k + 1}^r \sigma_i \bv_i \bu_i \trans \sum_{i = k + 1}^r \sigma_i \bu_i \bv_i \trans)\\ &= \tr(\sum_{i = k + 1}^r \sigma_i^2 \bv_i \bu_i \trans \bu_i \bv_i \trans)\\ &= \tr(\sum_{i = k + 1}^r \sigma_i^2 \bv_i \bv_i \trans)\\ &= \sum_{i = k + 1}^r \sigma_i^2. \end{aligned} $$ ##### Exercise 6(d) 令 `x` 為電腦儲存一個浮點數所需的容量。 說明一張 $m\times n$ 畫素的灰階圖片大約佔 $mn$ `x` 的容量、 而給定 $k$ 經過壓縮後的圖片大約佔 $mk + nk + k$ `x` 的容量。 :::warning - [x] 元 --> 元素 - [x] 用別人的圖要加註出處,不然就不要用;或是自己畫 - [x] 沒有寫結論 ::: $Ans:$ 矩陣 $A$ 總共有 $m\times n$ 個元素,$U_r$ 有 $m\times r$ 個元素,$V_r\trans$ 有 $r\times n$ 個元素,$\Sigma_r$ 則只需儲存主對角的 $r$ 個非零元。若以 $SVD$ 形式儲存,總計有 $(m+n+1)\times r$ 個元素。當 $r$ 遠小於 $m$ 和 $n$ 時,利用矩陣的 $SVD$ 可以大幅減少儲存量。 ![](https://i.imgur.com/GwM22tO.jpg) (Source: [線代啟示錄 | 奇異值分解 (SVD)](https://ccjou.wordpress.com/2009/09/01/%E5%A5%87%E7%95%B0%E5%80%BC%E5%88%86%E8%A7%A3-svd/)) ##### Exercise 7 以下練習討論一個矩陣 $A$ 的**摩爾–彭若斯廣義反矩陣(Moore–Penrose pseudoinverse)** 。 記作 $A^\dagger$。 ##### Exercise 7(a) 若 $\sigma_1, \ldots, \sigma_r$ 為非零實數,且 $$ \Sigma = \begin{bmatrix} \operatorname{diag}(\sigma_1, \ldots, \sigma_r) & O_{r,n-r} \\ O_{m-r,r} & O_{m-r,n-r} \end{bmatrix}, $$ 則 $$ \Sigma^\dagger = \begin{bmatrix} \operatorname{diag}(\sigma_1^{-1}, \ldots, \sigma_r^{-1}) & O_{r,m-r} \\ O_{n-r,r} & O_{n-r,m-r} \end{bmatrix}. $$ (注意零矩陣的大小。) 求 $$ \Sigma = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} $$ 的 $\Sigma^\dagger$。 :::warning - [x] 標點 - [x] $\sigma_n$ --> $\sigma_i$ ::: $Ans:$ 由定義可觀察到 $m,n$ 需互換且 $\sigma_i$ 要變成 $\sigma_i^{-1}$, 因此 $\Sigma^\dagger= \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$。 ##### Exercise 7(b) 若 $A$ 的奇異值分解為 $U\Sigma V\trans$, 則 $A^\dagger = V\Sigma^\dagger U\trans$。 求 $$ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{bmatrix} $$ 的 $A^\dagger$。 $Ans:$ 由 2(a) 可知 $V=\begin{bmatrix} \sqrt3/3 & -\sqrt2/2 & -\sqrt6/6 \\ \sqrt3/3& \sqrt2/2 & -\sqrt6/6\\ \sqrt3/3 & 0 & \sqrt6/3 \end{bmatrix}$ , $U=\begin{bmatrix} \sqrt2/2 & -\sqrt2/2\\ \sqrt2/2 & \sqrt2/2 \end{bmatrix}$, $Σ=\begin{bmatrix} \sqrt6 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, 因此可求得$$U\trans=\begin{bmatrix} \sqrt2/2 & \sqrt2/2\\ -\sqrt2/2 & \sqrt2/2 \end{bmatrix}$$, $$\Sigma^\dagger= \begin{bmatrix} \frac{1}{\sqrt6} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}。$$ 最後經過計算 $$A^\dagger = V\Sigma^\dagger U\trans = \begin{bmatrix} 1/6 & 1/6 \\ 1/6 & 1/6 \\ 1/6 & 1/6 \end{bmatrix}$$ 。 ##### Exercise 8 令 $A$ 為一 $m\times n$ 矩陣。 以下練習建立奇異值分解的理論基礎。 ##### Exercise 8(a) 令 $\bv$ 為 $A\trans A$ 的特徵向量且 $A\trans A\bv = \lambda\bv$。 證明 $A\bv$ 滿足 $AA\trans (A\bv) = \lambda(A\bv)$。 :::warning - [x] 用文字取代邏輯符號 $\Rightarrow$ - [x] 標點 ::: Ans: $AA\trans (A\bv)=A(A\trans A\bv)= A\lambda\bv$ 因為 $\lambda$ 是數字而不是矩陣所以可將 $\lambda$ 提到 $A$ 的前面,推得 $A\lambda\bv= \lambda A\bv = \lambda (A\bv)$。 ##### Exercise 8(b) 令 $\bv$ 為 $A\trans A$ 的特徵向量且 $A\trans A\bv = \lambda\bv$。 證明對任意向量 $\bu\in\mathbb{R}^n$,都有 $\inp{A\bv}{A\bu} = \lambda\inp{\bv}{\bu}$。 :::warning - [x] 用文字取代邏輯符號 $\Rightarrow$ - [x] 標點 ::: Ans: $\inp{A\bv}{A\bu}=\inp{A\trans A\bv}{\bu}=\inp{\lambda \bv}{\bu}$ 因為 $\lambda$ 是數字而不是矩陣所以可將 $\lambda$ 提出,推得 $\inp{\lambda \bv}{\bu}= \lambda \inp{ \bv}{\bu}$。 ##### Exercise 8(c) 藉由以上性質證明: 1. $\lambda \geq 0$。 2. $A\bv$ 是 $AA\trans$ 的特徵向量且長度為 $\sqrt{\lambda}$。 3. 若 $\alpha_1$ 為 $\Row(A\trans A)$ 的一組垂直標準特徵基底、 則 $\beta_1 = \{\frac{1}{\sigma_i}A\bv: \bv \in \alpha_1\}$ 為 $\Row(AA\trans)$ 的一組垂直標準特徵基底。 :::warning - [x] 用文字取代邏輯符號 $\Rightarrow$ - [x] 標點 ::: Ans: 令 $||\bv||=1$ 1. $\lambda=\inp{\bv}{\lambda \bv}=\inp{\bv}{A\trans A \bv}=\inp{A\bv}{A\bv}=||A\bv||^2>0$ 推得 $\lambda>0$。 2. 根據$\ 1.\ \lambda =||A\bv||^2$ 推得 $||A\bv||=\sqrt{\lambda}$。 3. $\sigma_i=\sqrt{\lambda} ,A\bv$ 是 $AA\trans$ 的特徵向量且長度為 $\sqrt{\lambda}$ ,推得 $A\bv\in \Row(A\trans A),$ 是個垂直特徵基底且長度為 $\sqrt{\lambda}$ ,推得 $\frac{1}{\sqrt{\lambda}}A\bv$ 為除以長度後的 $\Row(A\trans A)$ 垂直標準特徵基底,而 $\beta_1 = \{\frac{1}{\sigma_i}A\bv: \bv \in \alpha_1\} \in \Row(A\trans A)$ 所以 $\beta_1$ 是 $\Row(A\trans A)$ 的一組垂直標準特徵基底。 :::info 分數 = 5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully