Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 找一組好基底 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}}$ ```python from lingeo import random_int_list, random_good_matrix ``` ## Main idea Let $A$ be an $n\times n$ matrix. Recall that $f_A:\mathbb{R}^n \rightarrow \mathbb{R}^n$ is the function defined by $f_A(\bx) = A\bx$. Using the standard basis $\mathcal{E}_n$, the matrix representation of $f_A$ is $$ [f_A] = [f_A]_{\mathcal{E}_n}^{\mathcal{E}_n} = A. $$ In constrast, the matrix representation of $f_A$ with respect to another basis $\beta$ is $$ [f_A]_\beta^\beta = [\idmap]_{\mathcal{E}_n}^\beta [f_A] [\idmap]_\beta^{\mathcal{E}_n}. $$ If we let $Q = [\idmap]_\beta^{\mathcal{E}_n}$, then the columns of $Q$ are the vectors in $\beta$. Also, we can write, $[f_A]_\beta^\beta = Q^{-1}AQ$. On a matrix level, we say $A$ and $B$ are **similar** if there is an invertible matrix $Q$ such that $B = Q^{-1}AQ$. In other words, $A$ and $B$ are just the same linear function represented under different bases. Suppose $\beta = \{\bv_1, \ldots, \bv_n\}$ has the nice property that $$ A\bv_i = \lambda_i \bv_i $$ for some values $\lambda_i$ and for $i = 1,\ldots, n$. Then we know $$ [f_A]_\beta^\beta = \begin{bmatrix} | & ~ & | \\ [f_A(\bv_1)]_\beta & \cdots & [f_A(\bv_n)]_\beta \\ | & ~ & | \\ \end{bmatrix} = \begin{bmatrix} | & ~ & | \\ [\lambda_1\bv_1]_\beta & \cdots & [\lambda_n\bv_n]_\beta \\ | & ~ & | \\ \end{bmatrix} = \begin{bmatrix} \lambda_1 & ~ & ~ \\ ~ & \ddots & ~ \\ ~ & ~ & \lambda_n \end{bmatrix}, $$ which is a diagonal matrix. In this case, we say $A$ is **diagonalizable** . Whenever $A\bv = \lambda\bv$ for some value $\lambda$ and some nonzero vector $\bv$, we say $\lambda$ is an **eigenvalue** of $A$ and $\bv$ is an **eigenvector** of $A$ with respect to $\lambda$. Similarly, if $f: V\rightarrow V$ is a linear function and $f(\bv) = \lambda \bv$ for some value $\lambda$ and some nonzero vector $\bv$, then we say $\lambda$ is an eigenvalue of $f$ and $\bv$ is an eigenvector of $f$ with respect to $\lambda$. ##### Proposition Let $A$ be an $n\times n$ matrix. Then the following are equivalent. - $A$ is diagonalizable. - There is a basis $\beta$ of $\mathbb{R}^n$ that is composed of eigenvectors. - There are an invertible matrix $Q$ and a diagonal matrix $D$ such that $D = Q^{-1}AQ$. When $A$ is a real symmetric matrix (meaning $A\trans = A$), such a nice basis exists; moreover, it can be chosen to be orthonormal, so the corresponding $Q$ has $Q\trans = Q^{-1}$. ##### Spectral theorem (vector version) Let $A$ be an $n\times n$ symmetric matrix. Then there is an orthonormal basis $\beta$ of $\mathbb{R}^n$ such that $[f_A]_\beta^\beta = D$ is a diagonal matrix. That is, there is an orthogonal matrix $Q$ such that $Q^\top AQ = D$ is a diagonal matrix. ## Side stories - Jordan canonical form - algebra of $Q^{-1}AQ$ - matrix power - simultaneously diagonalizable ## Experiments ##### Exercise 1 執行以下程式碼。 令 $\beta = \{\bv_1, \cdots, \bv_n\}$ 為 $Q$ 的各行向量。 ```python ### code set_random_seed(5) print_ans = False n = 3 D = diagonal_matrix(random_int_list(n, 3)) Q = random_good_matrix(n,n,n, 2) A = Q * D * Q.inverse() pretty_print(LatexExpr("A ="), A) pretty_print(LatexExpr("Q ="), Q) if print_ans: v1, v2, v3 = Q.columns() u1, u2, u3 = D.columns() print("f_A(v1) =", A * v1) print("vector representation =", u1) print("f_A(v1) =", A * v2) print("vector representation =", u2) print("f_A(v1) =", A * v3) print("vector representation =", u3) print("matrix represesntation =") pretty_print(D) ``` 當 `seed = 5` 時,得矩陣$$ A = \begin{bmatrix} -3 & -1 & -1\\ 4 & -4 & -5\\ -4 & 2 & 3\\ \end{bmatrix}. $$ 及$$ Q = \begin{bmatrix} 1 & 0 & -1\\ -1 & 1 & 3\\ 1 & -1 & -2\\ \end{bmatrix}. $$ ##### Exercise 1(a) 求 $f_A(\bv_1)$ 及 $[f_A(\bv_1)]_\beta$。 :::warning - [x] 把向量都改成直的(向量一般寫直的,要寫橫的也可以,但不要混著用) - [x] 後兩題加標點 ::: $Ans:$ $f_A(\bv_1)$ $=A\cdot\begin{bmatrix} 1\\ -1\\ 1\\ \end{bmatrix}$ $=\begin{bmatrix} -3\\ 3\\ -3\\ \end{bmatrix}$。 因為 $f_A(\bv_1)$ 以 $\beta$ 表示為 $-3\cdot\bv_1+0\cdot\bv_2+0\cdot\bv_3$, 故 $[f_A(\bv_1)]_\beta = \begin{bmatrix} -3\\ 0\\ 0\\ \end{bmatrix}$ 。 ##### Exercise 1(b) 求 $f_A(\bv_2)$ 及 $[f_A(\bv_2)]_\beta$。 $Ans:$ 由 1(a) 可推知,$f_A(\bv_2)=\begin{bmatrix} 0\\ 1\\ -1\\ \end{bmatrix}$,$[f_A(\bv_2)]_\beta=\begin{bmatrix} 0\\ 1\\ 0\\ \end{bmatrix}$。 ##### Exercise 1(c) 求 $f_A(\bv_3)$ 及 $[f_A(\bv_3)]_\beta$。 $Ans:$ 由 1(a) 可推知,$f_A(\bv_3)=\begin{bmatrix} 2\\ -6\\ 4\\ \end{bmatrix}$,$[f_A(\bv_3)]_\beta=\begin{bmatrix} 0\\ 0\\ -2\\ \end{bmatrix}$。 ##### Exercise 1(d) 求 $[f_A]_\beta^\beta$。 :::warning - [x] 將已知的 $[f_A(\bv_1)]_\beta$、$[f_A(\bv_2)]_\beta$、$[f_A(\bv_3)]_\beta$ 設為 $[f_A]_\beta^\beta$ 的行向量,可得 ... ::: $Ans:$ 將已知的 $[f_A(\bv_1)]_\beta$、$[f_A(\bv_2)]_\beta$、$[f_A(\bv_3)]_\beta$ 設為 $[f_A]_\beta^\beta$ 的行向量,可得 $[f_A]_\beta^\beta =\begin{bmatrix} -3 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -2\\ \end{bmatrix}$ ## Exercises ##### Exercise 2 對以下的矩陣 $A$ 及基底 $\beta$, 求出 $[f_A]_\beta^\beta$。 ##### Exercise 2(a) $$ A = \begin{bmatrix} 5 & -1 \\ -1 & 5 \end{bmatrix} \quad\text{and}\quad \beta = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}. $$ **[由林暐智同學提供答案]** 令 $\beta$ 中行向量分別為 $\bv_1,\bv_2$ 則 $f_A(\bv_1) = A\bv_1 = (4,4) = 4\bv_1 + 0\bv_2$,所以 $[f_A(\bv_1)]_\beta=(4,0)$。 $f_A(\bv_2) = A\bv_2 = (6,-6) = 0\bv_1 + 6\bv_2$,所以 $[f_A(\bv_2)]_\beta=(0,6)$。 又 $$ [f_A]_\beta^\beta = \begin{bmatrix} | & ~ & | \\ [f_A(\bv_1)]_\beta & \cdots & [f_A(\bv_n)]_\beta \\ | & ~ & | \\ \end{bmatrix}。 $$ 最後將上述向量放為行向量可得 $[f_A]_\beta^\beta =\begin{bmatrix} 4 & 0 \\ 0 & 6\\ \end{bmatrix}$。 ##### Exercise 2(b) $$ A = \begin{bmatrix} -1 & 5 \\ 5 & -1 \end{bmatrix} \quad\text{and}\quad \beta = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}. $$ **[由林暐智同學提供答案]** 令 $\beta$ 中行向量分別為 $\bv_1,\bv_2$ 則 $f_A(\bv_1) = A\bv_1 = (4,4) = 4\bv_1 + 0\bv_2$,所以 $[f_A(\bv_1)]_\beta=(4,0)$。 $f_A(\bv_2) = A\bv_2 = (-6,6) = 0\bv_1 + -6\bv_2$,所以 $[f_A(\bv_2)]_\beta=(0,-6)$。 又$$ [f_A]_\beta^\beta = \begin{bmatrix} | & ~ & | \\ [f_A(\bv_1)]_\beta & \cdots & [f_A(\bv_n)]_\beta \\ | & ~ & | \\ \end{bmatrix}。$$最後將上述向量放為行向量可得 $[f_A]_\beta^\beta =\begin{bmatrix} 4 & 0 \\ 0 & -6\\ \end{bmatrix}$。 ##### Exercise 2(c) $$ A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad\text{and}\quad \beta = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}. $$ **[由林暐智同學提供答案]** 令 $\beta$ 中行向量分別為 $\bv_1,\bv_2$ 則 $f_A(\bv_1) = A\bv_1 = (2,2) = 2\bv_1 + 0\bv_2$,所以 $[f_A(\bv_1)]_\beta=(2,0)$。 $f_A(\bv_2) = A\bv_2 = (0,0) = 0\bv_1 + 0\bv_2$,所以 $[f_A(\bv_2)]_\beta=(0,0)$。 又$$ [f_A]_\beta^\beta = \begin{bmatrix} | & ~ & | \\ [f_A(\bv_1)]_\beta & \cdots & [f_A(\bv_n)]_\beta \\ | & ~ & | \\ \end{bmatrix}。$$最後將上述向量放為行向量可得 $[f_A]_\beta^\beta =\begin{bmatrix} 2 & 0 \\ 0 & 0\\ \end{bmatrix}$。 ##### Exercise 2(d) $$ A = \begin{bmatrix} 0 & 1 \\ -6 & 5 \end{bmatrix} \quad\text{and}\quad \beta = \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}. $$ **[由蔡宗諺同學提供答案]** $f_A(\bv_1)=A\cdot\begin{bmatrix} 1\\ 3\\ \end{bmatrix}$ $=\begin{bmatrix} 3\\ 9\\ \end{bmatrix}$ , 因為 $f_A(\bv_1)$ 以 $\beta$ 表示為 $3\cdot\bv_1+0\cdot\bv_2$, 故 $[f_A(\bv_1)]_\beta = \begin{bmatrix} 3\\ 0\\ \end{bmatrix}$ 。 $f_A(\bv_2)=A\cdot\begin{bmatrix} 1\\ 2\\ \end{bmatrix}$ $=\begin{bmatrix} 2\\ 4\\ \end{bmatrix}$ , 因為 $f_A(\bv_2)$ 以 $\beta$ 表示為 $0\cdot\bv_1+2\cdot\bv_2$, 故 $[f_A(\bv_2)]_\beta = \begin{bmatrix} 0\\ 2\\ \end{bmatrix}$ 。 所以將上述向量放為行向量可得 $[f_A]_\beta^\beta =\begin{bmatrix} 3 & 0\\ 0 & 2\\ \end{bmatrix}$ 。 ##### Exercise 2(e) $$ A = \begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix} \quad\text{and}\quad \beta = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix} \right\}. $$ **[由蔡宗諺同學提供答案]** $f_A(\bv_1)=A\cdot\begin{bmatrix} 1\\ 2\\ \end{bmatrix}$ $=\begin{bmatrix} 2\\ -4\\ \end{bmatrix}$ , 因為 $f_A(\bv_1)$ 以 $\beta$ 表示為 $0\cdot\bv_1+2\cdot\bv_2$, 故 $[f_A(\bv_1)]_\beta = \begin{bmatrix} 0\\ 2\\ \end{bmatrix}$ 。 $f_A(\bv_2)=A\cdot\begin{bmatrix} 1\\ -2\\ \end{bmatrix}$ $=\begin{bmatrix} -2\\ -4\\ \end{bmatrix}$ , 因為 $f_A(\bv_2)$ 以 $\beta$ 表示為 $-2\cdot\bv_1+0\cdot\bv_2$, 故 $[f_A(\bv_2)]_\beta = \begin{bmatrix} -2\\ 0\\ \end{bmatrix}$ 。 所以將上述向量放為行向量可得 $[f_A]_\beta^\beta =\begin{bmatrix} 0 & -2\\ 2 & 0\\ \end{bmatrix}$。 ##### Exercise 3 以下練習說明有些時候儘管矩陣無法對角化, 還是可以把 $[f_A]_\beta^\beta$ 化成一定簡單的形式。 未來會學到這些例子叫喬丹標準型。 對以下的矩陣 $A$ 及基底 $\beta$, 求出 $[f_A]_\beta^\beta$。 ##### Exercise 3(a) $$ A = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \quad\text{and}\quad \beta = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}. $$ :::warning - [x] 跟前面一樣,不要只有答案;後面幾題都是 - [x] 少標點;後面幾題都是 - [x] 最後的矩陣有錯 ::: $Ans:$ $f_A(\bv_1)=A\cdot\begin{bmatrix} 1\\ 1\\ \end{bmatrix}$ $=\begin{bmatrix} 0\\ 0\\ \end{bmatrix}$ , 因為 $f_A(\bv_1)$ 以 $\beta$ 表示為 $0\cdot\bv_1+0\cdot\bv_2$, 故 $[f_A(\bv_1)]_\beta = \begin{bmatrix} 0\\ 0\\ \end{bmatrix}$ 。 $f_A(\bv_2)=A\cdot\begin{bmatrix} 1\\ -1\\ \end{bmatrix}$ $=\begin{bmatrix} 1\\ 1\\ \end{bmatrix}$ , 因為 $f_A(\bv_2)$ 以 $\beta$ 表示為 $1\cdot\bv_1+0\cdot\bv_2$, 故 $[f_A(\bv_2)]_\beta = \begin{bmatrix} 1\\ 0\\ \end{bmatrix}$ 。 所以 $[f_A]_\beta^\beta =\begin{bmatrix} 0 & 1\\ 0 & 0\\ \end{bmatrix}$ 。 ##### Exercise 3(b) $$ A = \begin{bmatrix} 0 & 1 \\ -4 & 4 \end{bmatrix} \quad\text{and}\quad \beta = \left\{ \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right\}. $$ $Ans:$ $f_A(\bv_1)=A\cdot\begin{bmatrix} 2\\ 4\\ \end{bmatrix}$ $=\begin{bmatrix} 4\\ 8\\ \end{bmatrix}$ , 因為 $f_A(\bv_1)$ 以 $\beta$ 表示為 $2\cdot\bv_1+0\cdot\bv_2$, 故 $[f_A(\bv_1)]_\beta = \begin{bmatrix} 2\\ 0\\ \end{bmatrix}$ 。 $f_A(\bv_2)=A\cdot\begin{bmatrix} -1\\ 0\\ \end{bmatrix}$ $=\begin{bmatrix} 0\\ 4\\ \end{bmatrix}$ , 因為 $f_A(\bv_2)$ 以 $\beta$ 表示為 $1\cdot\bv_1+2\cdot\bv_2$, 故 $[f_A(\bv_2)]_\beta = \begin{bmatrix} 1\\ 2\\ \end{bmatrix}$ 。 所以 $[f_A]_\beta^\beta =\begin{bmatrix} 2 & 1\\ 0 & 2\\ \end{bmatrix}$ 。 ##### Exercise 3(c) $$ A = \begin{bmatrix} 0 & 1 \\ -9 & 6 \end{bmatrix} \quad\text{and}\quad \beta = \left\{ \begin{bmatrix} 3 \\ 9 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right\}. $$ $Ans:$ $f_A(\bv_1)=A\cdot\begin{bmatrix} 3\\ 9\\ \end{bmatrix}$ $=\begin{bmatrix} 9\\ 27\\ \end{bmatrix}$ , 因為 $f_A(\bv_1)$ 以 $\beta$ 表示為 $3\cdot\bv_1+0\cdot\bv_2$, 故 $[f_A(\bv_1)]_\beta = \begin{bmatrix} 3\\ 0\\ \end{bmatrix}$ 。 $f_A(\bv_2)=A\cdot\begin{bmatrix} -1\\ 0\\ \end{bmatrix}$ $=\begin{bmatrix} 0\\ 9\\ \end{bmatrix}$ , 因為 $f_A(\bv_2)$ 以 $\beta$ 表示為 $1\cdot\bv_1+3\cdot\bv_2$, 故 $[f_A(\bv_2)]_\beta = \begin{bmatrix} 1\\ 3\\ \end{bmatrix}$ 。 所以 $[f_A]_\beta^\beta =\begin{bmatrix} 3 & 1\\ 0 & 3\\ \end{bmatrix}$ 。 ##### Exercise 4 對以下的矩陣 $A$ 及基底 $\beta$, 求出 $[f_A]_\beta^\beta$。 ##### Exercise 4(a) $$ A = \begin{bmatrix} 4 & 0 & -1 \\ 0 & 4 & -1 \\ -1 & -1 & 5 \end{bmatrix} \quad\text{and}\quad \beta = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} \right\}. $$ :::warning - [x] 不要只有答案;後面幾題都是 ::: $Ans:$ 令 $\beta$ 中行向量分別為 $\bv_1,\bv_2,\bv_3$ 則 $f_A(\bv_1) = A\bv_1 = (3,3,3) = 3\bv_1 + 0\bv_2 + 0\bv_3$,所以 $[f_A(\bv_1)]_\beta=(3,0,0)$。 $f_A(\bv_2)=A\bv_2=(4,-4,0)= 0\bv_1 + 4\bv_2 + 0\bv_3$,所以$[f_A(\bv_2)]_\beta=(0,4,0)$。 $f_A(\bv_3)=A\bv_3=(6,6,12)= 0\bv_1 + 0\bv_2 + 6\bv_3$,所以$[f_A(\bv_3)]_\beta=(0,0,6)$。 又$$ [f_A]_\beta^\beta = \begin{bmatrix} | & ~ & | \\ [f_A(\bv_1)]_\beta & \cdots & [f_A(\bv_n)]_\beta \\ | & ~ & | \\ \end{bmatrix}。$$最後將上述向量放為行向量可得 $[f_A]_\beta^\beta =\begin{bmatrix} 3 & 0 & 0\\ 0 & 4 & 0\\ 0 & 0 & 6 \end{bmatrix}$。 ##### Exercise 4(b) $$ A = \begin{bmatrix} 2 & -2 & 3 \\ -2 & 2 & 3 \\ 3 & 3 & -3 \end{bmatrix} \quad\text{and}\quad \beta = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} \right\}. $$ $Ans:$ 令 $\beta$ 中行向量分別為 $\bv_1,\bv_2,\bv_3$ 則 $f_A(\bv_1) = A\bv_1 = (3,3,3) = 3\bv_1 + 0\bv_2 + 0\bv_3$,所以 $[f_A(\bv_1)]_\beta=(3,0,0)$。 $f_A(\bv_2)=A\bv_2=(4,-4,0)= 0\bv_1 + 4\bv_2 + 0\bv_3$,所以$[f_A(\bv_2)]_\beta=(0,4,0)$。 $f_A(\bv_3)=A\bv_3=(-6,-6,12)= 0\bv_1 + 0\bv_2 + (-6)\bv_3$,所以$[f_A(\bv_3)]_\beta=(0,0,-6)$。 又$$ [f_A]_\beta^\beta = \begin{bmatrix} | & ~ & | \\ [f_A(\bv_1)]_\beta & \cdots & [f_A(\bv_n)]_\beta \\ | & ~ & | \\ \end{bmatrix}。$$最後將上述向量放為行向量可得 $[f_A]_\beta^\beta =\begin{bmatrix} 3 & 0 & 0\\ 0 & 4 & 0\\ 0 & 0 & -6 \end{bmatrix}$。 ##### Exercise 4(c) $$ A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{bmatrix} \quad\text{and}\quad \beta = \left\{ \begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}. $$ $Ans:$ 令 $\beta$ 中行向量分別為 $\bv_1,\bv_2,\bv_3$ 則 $f_A(\bv_1) = A\bv_1 = (3,9,27) = 3\bv_1 + 0\bv_2 + 0\bv_3$,所以 $[f_A(\bv_1)]_\beta=(3,0,0)$。 $f_A(\bv_2)=A\bv_2=(2,4,8)= 0\bv_1 + 2\bv_2 + 0\bv_3$,所以$[f_A(\bv_2)]_\beta=(0,2,0)$。 $f_A(\bv_3)=A\bv_3=(1,1,1)= 0\bv_1 + 0\bv_2 + 1\bv_3$,所以$[f_A(\bv_3)]_\beta=(0,0,1)$。 又$$ [f_A]_\beta^\beta = \begin{bmatrix} | & ~ & | \\ [f_A(\bv_1)]_\beta & \cdots & [f_A(\bv_n)]_\beta \\ | & ~ & | \\ \end{bmatrix}。$$最後將上述向量放為行向量可得 $[f_A]_\beta^\beta =\begin{bmatrix} 3 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 1 \end{bmatrix}$。 ##### Exercise 5 令 $A$ 及 $B$ 為兩 $n\times n$ 矩陣,而 $Q$ 為一 $n\times n$ 可逆矩陣。 ##### Exercise 5(a) 以矩陣運算說明 $$ Q^{-1}AQ + Q^{-1}BQ = Q^{-1}(A + B)Q. $$ :::warning - [x] 標點 - [x] 中英文間空格 ::: Ans: 已知矩陣有分配律: $$ A(B+C)=AB+AC, \quad (A+B)C=AC+BC $$ 故 $Q^{-1}AQ + Q^{-1}BQ$ 可先將 $Q^{-1}$ 提出, 得 $Q^{-1}(AQ+BQ).$ 再將 $Q$ 提出,得 $Q^{-1}((A+B)Q)$ ,即 $Q^{-1}(A + B)Q.$ 得證 $Q^{-1}AQ + Q^{-1}BQ = Q^{-1}(A + B)Q.$ ##### Exercise 5(b) 利用 $f_A + f_B = f_{A + B}$ 的性質說明 $$ Q^{-1}AQ + Q^{-1}BQ = Q^{-1}(A + B)Q. $$ **[由林柏仰同學提供]** 由於 $Q^{-1}$ 存在, $Q^{-1}$ 的行向量為定義域中的一組基底 $\beta$ 。 觀察 $f_A$ , $f_A$ 會將一向量 $\bv$ 送到 $A\bv$ ,若用 $\beta$ 去觀察,可看成將 $[\bv]_\beta$ 送到 $Q^{-1}AQ[\bv]_\beta$ 。 而用 $\beta$ 觀察 $f_B\ ,\ f_{A+B}$ 也會得到類似的結論。 依照 $f_A + f_B = f_{A + B}$ 此一性質,可得到等式 $$ (Q^{-1}AQ + Q^{-1}BQ)[\bv]_\beta = Q^{-1}(A + B)Q[\bv]_\beta,\\ [\ (Q^{-1}AQ + Q^{-1}BQ) - Q^{-1}(A + B)Q\ ][\bv]_\beta = \bzero. $$ 由於此等式對任意的 $\bv$ 都成立,故 $Q^{-1}AQ + Q^{-1}BQ = Q^{-1}(A + B)Q$。 ##### Exercise 5(c) 以矩陣運算說明 $$ (Q^{-1}AQ)^n = Q^{-1}A^nQ. $$ :::warning - [x] 用 `aligned` 環境把大型數學式排好 - [x] 標點 ::: Ans: 已知 $QQ^{-1}=Q^{-1}Q=I$ , $I$ 為單位矩陣,故 $$ \begin{aligned} (Q^{-1}AQ)^n &= (Q^{-1}AQ)(Q^{-1}AQ)...(Q^{-1}AQ) \\ &= Q^{-1}A(QQ^{-1})A(Q...Q^{-1})AQ \\ &= Q^{-1}A^{n}Q. \end{aligned} $$ ##### Exercise 5(d) 利用 $f_A \circ \cdots \circ f_A = f_{A^n}$ 的性質說明 $$ (Q^{-1}AQ)^n = Q^{-1}A^nQ, $$ 其中 $f_A \circ \cdots \circ f_A$ 是指將 $f_A$ 函數和自己合成 $n$ 次。 **[由林柏仰同學提供]** 因 $Q$ 可逆,令 $Q$ 的行向量為定義域中的一組基底 $\beta$。 觀察 $f_A$ , $f_A$ 會將一向量 $\bv$ 送到 $A\bv$ ,而若用 $\beta$ 來觀察這個動作,可看成將表示法 $[\bv]_\beta$ 送到表示法 $[f_A]_\beta^\beta[\bv]_\beta$ 。 即在 $[\bv]_\beta$ 前乘上 $Q^{-1}AQ$ 。 而 $f_A \circ \cdots \circ f_A$ 是指將 $f_A$ 函數和自己合成 $n$ 次,相當於將 $\bv$ 送 $n$ 次。 則若用 $\beta$ 來觀察,即為在 $[\bv]_\beta$ 前乘上 $(Q^{-1}AQ)^n$ 。 觀察 $f_{A^n}$ , $f_{A^n}$ 是將一向量 $\bv$ 送到 $A^n\bv$ ,若用 $\beta$ 來觀察,便是在 $[\bv]_\beta$ 前乘上 $Q^{-1}A^nQ$ 。 則可得到等式 $$ (Q^{-1}AQ)^n[\bv]_\beta = Q^{-1}A^nQ[\bv]_\beta,\\ ((Q^{-1}AQ)^n - Q^{-1}A^nQ)[\bv]_\beta = \bzero. $$ 由於這個等式對所有 $\bv$ 都對,故 $(Q^{-1}AQ)^n = Q^{-1}A^nQ$。 ##### Exercise 5(e) 說明若 $A$ 可逆,則 $$ (Q^{-1}AQ)^{-1} = Q^{-1}A^{-1}Q. $$ :::warning - [x] 標點 - [x] 敘述怪怪的:為找出反矩陣,可前後乘反矩陣?如果有反矩陣可以乘就不用找了啊。應該要說 如要驗證 ??? 為 ??? 之反矩陣,... ::: Ans: <!-- 可知 $Q^{-1}A^{-1}Q$ 為其反矩陣。 --> <!-- ,可依序前乘或後乘, 如 $Q^{-1}AQ(Q^{-1}A^{-1}Q)=I$ 或 $(Q^{-1}A^{-1}Q)Q^{-1}AQ=I$ 皆可證所求反矩陣為 $Q^{-1}A^{-1}Q$。 --> 經直接計算可得 $$ Q^{-1}AQ(Q^{-1}A^{-1}Q) = Q^{-1}AA^{-1}Q = Q^{-1}Q = I $$ 及 $$ (Q^{-1}A^{-1}Q)Q^{-1}AQ = Q^{-1}A^{-1}AQ = Q^{-1}Q = I. $$ 如此可驗證 $Q^{-1}AQ$ 之反矩陣為 $Q^{-1}A^{-1}Q$ ##### Exercise 6 對以下矩陣 $A$,利用 5c 的結果計算 $A^n$。 ##### Exercise 6(a) $$ A = \begin{bmatrix} 0 & 1 \\ -6 & 5 \end{bmatrix}. $$ (參考 2d。) :::warning - [x] 向量粗體 - [x] 標點 ::: Ans: 存在 $\bv_1=\begin{bmatrix}1\\3\end{bmatrix}, \bv_2=\begin{bmatrix}1\\2\end{bmatrix}$ 使 $A\bv_1=\begin{bmatrix}3\\9\end{bmatrix}=3\bv_1, A\bv_2=\begin{bmatrix}2\\4\end{bmatrix}=2\bv_2.$ 故可設 $Q=\begin{bmatrix}1&1\\3&2\end{bmatrix}$ 使 $Q^{-1}AQ=\begin{bmatrix}3&0\\0&2\end{bmatrix}=D,$ $A^n=Q^{-1}D^n Q=\begin{bmatrix}-2&1\\3&-1\end{bmatrix}\begin{bmatrix}3^n &0\\0&2^n\end{bmatrix}\begin{bmatrix}1&1\\3&2\end{bmatrix}=\begin{bmatrix}3(2^n)-2(3^n)&2(2^n)-2(3^n)\\-3(2^n)+3(3^n)&-2(2^n)+3(3^n)\end{bmatrix}.$ ##### Exercise 6(b) $$ A = \begin{bmatrix} 0 & 1 \\ -4 & 4 \end{bmatrix}. $$ (參考 3b。) :::warning - [x] 同上題 - [x] $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}^n$ 是可以算的喔 ::: Ans: 存在 $\bv_1=\begin{bmatrix}2\\4\end{bmatrix}, \bv_2=\begin{bmatrix}-1\\0\end{bmatrix}$ 使 $A\bv_1=\begin{bmatrix}4\\8\end{bmatrix}=2\bv_1, A\bv_2=\begin{bmatrix}0\\4\end{bmatrix}=\bv_1+2\bv_2.$ 故可設 $Q=\begin{bmatrix}2&-1\\4&0\end{bmatrix}$ 使 $Q^{-1}AQ=\begin{bmatrix}2&1\\0&2\end{bmatrix}=D$ $A^n =Q^{-1}D^n Q =\begin{bmatrix}0&1/4\\-1&1/2\end{bmatrix} \begin{bmatrix}2^{n}&(2^{n}n)/2\\0&2^{n}\end{bmatrix} \begin{bmatrix}2&-1\\4&0\end{bmatrix}.$ ##### Exercise 7 令 $A$ 及 $B$ 為兩 $n\times n$ 矩陣,而 $Q$ 為一 $n\times n$ 可逆矩陣。 若 $Q^{-1}AQ$ 和 $Q^{-1}BQ$ 都是對角矩陣,證明 $AB = BA$。 :::warning - [x] You made it way too complicated. Follow the steps: 1. Explain if $D_1$ and $D_2$ are diagonal matrices, then $D_1D_2 = D_2D_1$. 2. Use 1. and the fact that $Q^{-1}AQ$ and $Q^{-1}BQ$ are diagonal matrices to show that $AB= BA$. ::: Let $D_1$ and $D_2$ be two diagonal matrices. We may assume $$ D_1 = \begin{bmatrix} \ a_i & ~ & ~ \\ ~ & \ddots & ~ \\ ~ & ~ & \ a_n \end{bmatrix} \text{ and } D_2 = \begin{bmatrix} \ b_i & ~ & ~ \\ ~ & \ddots & ~ \\ ~ & ~ & \ b_n \end{bmatrix}. $$ From the two diagonal matrices above, we may check $$D_1D_2 = \begin{bmatrix} \ a_ib_i & ~ & ~ \\ ~ & \ddots & ~ \\ ~ & ~ & \ a_nb_n \end{bmatrix} = \begin{bmatrix} \ b_ia_i & ~ & ~ \\ ~ & \ddots & ~ \\ ~ & ~ & \ b_na_n \end{bmatrix} = D_2D_1. $$ Since $Q^{-1}AQ$ and $Q^{-1}BQ$ are diagonal matrices, we have $(Q^{-1}AQ)(Q^{-1}BQ) = (Q^{-1}BQ)(Q^{-1}AQ)$, which means $Q^{-1}ABQ = Q^{-1}BAQ$ since $QQ^{-1} = I$. After that, we __pre-multiply $Q$__ on the both sides and get $ABQ = BAQ$. Similarly, we __post-multiply $Q^{-1}$__ on the both sides and get $AB = BA$. Therefore, $AB = BA$. :::info 目前分數 = 5 $\times$ 檢討 = 6 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully