Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 瑞利商 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\iner}{\operatorname{iner}}$ ```python from lingeo import random_int_list ``` ## Main idea Let $A$ be an $n\times n$ real symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. According to the spectral theorem, there is an orthonormal basis $\beta = \{\bv_1, \ldots, \bv_n\}$ corresponding to $\lambda_1,\ldots,\lambda_n$. Let $\bv$ be a vector in $\mathbb{R}^n$. Then we have the following properties: - It can be written as $\bx = c_1\bv_1 + \cdots + c_n\bv_n$ for some coefficients $c_1,\ldots,c_n$. - $\|\bx\|^2 = \inp{\bx}{\bx} = c_1^2 + \cdots + c_n^2$. - $\bx\trans A\bx = \inp{A\bx}{\bx} = c_1^2\lambda_1 + \cdots + c_n^2\lambda_n$. With these property in mind, one may solve the optimization problem: minimize $\bx\trans A\bx$, subject to $\|\bx\| = 1$. The minimum value is $\lambda_1$ and is achieved by $\bx = \bv_1$ (or other vector in the same eigenspace). Similarly, if the problem is asking for an maximum value, then the maximum value is $\lambda_n$ and is achieved by $\bx = \bv_n$. Let $A$ be an $n\times n$ real symmetric matrix. The **Rayleigh quotient** of $A$ is a function of the form $$ R_A(\bx) = \frac{\bx\trans A\bx}{\bx\trans \bx}. $$ ##### Rayleigh quotient theorem Let $A$ be an $n\times n$ real symmetric matrix. Then $$ \begin{aligned} \lambda_1 &= \min_{ \substack{\bx\in\mathbb{R}^n \\ \bx\neq\bzero} } R_A(\bx) = \min_{ \substack{\bx\in\mathbb{R}^n \\ \|\bx\| = 1} } \bx\trans A\bx, \\ \lambda_n &= \max_{ \substack{\bx\in\mathbb{R}^n \\ \bx\neq\bzero} } R_A(\bx) = \max_{ \substack{\bx\in\mathbb{R}^n \\ \|\bx\| = 1} } \bx\trans A\bx. \end{aligned} $$ The minimum is achieved by an eigenvector of $\lambda_1$, while the maximum is achieved by an eigenvector of $\lambda_n$. Moreover, if one already know $\lambda_1$ and $\bv_1$, then $$ \lambda_2 = \min_{ \substack{\bx\in\mathbb{R}^n \\ \bx\neq\bzero,\ \bx\perp\bv_1} } R_A(\bx) = \min_{ \substack{\bx\in\mathbb{R}^n \\ \|\bx\| = 1,\ \bx\perp\bv_1} } \bx\trans A\bx. $$ The vector $\bv_{n-1}$ can be done in a similar way if $\lambda_n$ and $\bv_n$ is known. ## Side stories - optimization problem - Courant–Fisher theorem ## Experiments ##### Exercise 1 執行以下程式碼。 ```python ### code set_random_seed(0) print_ans = False n = 3 eigs = random_int_list(n) A = diagonal_matrix(eigs) pretty_print(LatexExpr("A ="), A) if print_ans: xAx = " + ".join("x_%s^2 (%s)"%(i+1, eigs[i]) for i in range(n)) print("xT A x =", xAx) print("max value:", max(eigs)) print("achieved by:", identity_matrix(n)[max(list(range(n)), key=lambda k: eigs[k])]) print("min value:", min(eigs)) print("achieved by:", identity_matrix(n)[min(list(range(n)), key=lambda k: eigs[k])]) ``` ##### Exercise 1(a) 令 $$ \bx = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}. $$ 計算 $\bx\trans A\bx$。 $Ans:$ 當 `seed = 0` 時, $A = \begin{bmatrix} -4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}.$ $\bx\trans A\bx = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}\begin{bmatrix} -4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}=-4x_1^2+3x_2^2+5x_3^2$. ##### Exercise 1(b) 求 $\bx\trans A\bx$ 在 $\|\bx\| = 1$ 限制下的最大值。 達成這個最大值的 $\bx$ 為何? :::warning - [x] 加文字說明 - [x] 實際上這題是希望對這樣的問題有一點感覺,不要直接用定理。想看看長度為 $1$ 的意思是 $x_1^2 + x_2^2 + x_3^2 = 1$,而這時候 $-4x_1^2 + 3x_2^2 + 5x_3^2$ 的最大值為何? ::: $Ans:$ 計算 $\bx\trans A\bx = -4x_1^2 + 3x_2^2 + 5x_3^2$, 因題意 $\|\bx\| = 1$ 得知 $x_1^2 + x_2^2 + x_3^2 = 1$, 而 $\bx_3^2$ 係數最大,因此在 $\bx = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ 時, $\bx\trans A\bx$ 會有最大值 $-4x_1^2 + 3x_2^2 + 5x_3^2=5$。 ##### Exercise 1(c) 求 $\bx\trans A\bx$ 在 $\|\bx\| = 1$ 限制下的最小值。 達成這個最小值的 $\bx$ 為何? :::warning - [x] 參考上一題 ::: $Ans:$ 計算 $\bx\trans A\bx = -4x_1^2 + 3x_2^2 + 5x_3^2$, 因題意 $\|\bx\| = 1$ 得知 $x_1^2 + x_2^2 + x_3^2 = 1$, 而 $\bx_1^2$ 係數最小,因此在 $x = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ 時, $\bx\trans A\bx$ 會有最小值 $-4x_1^2 + 3x_2^2 + 5x_3^2=-4$。 ## Exercises ##### Exercise 2 令 $A = \begin{bmatrix} a_{ii} \end{bmatrix}$ 為一 $n\times n$ 實對稱矩陣,且其特徵值為 $\lambda_1 \leq \cdots \leq \lambda_n$。 ##### Exercise 2(a) 證明對所有 $i = 1,\ldots,n$ 都有 $\lambda_1 \leq a_{ii} \leq \lambda_n$。 提示:找一個適合的向量 $\bx$ 來套用 $\lambda_1 \leq R_A(\bx) \leq \lambda_n$。 :::warning - [x] 我不懂為什麼 $\lambda_1 \leq R_A(\bx)=(x_1)^2a_{11}+(x_2)^2a_{22}+\cdots+(x_n)^2a_{n,n}\leq \lambda_n$ 可以得到 $\lambda_1 \leq a_{ii} \leq \lambda_n$?實際上這題你只要分別取 $\bx = \be_1,\ldots, \be_n$ 就好。 ::: $Ans:$ 令 $$ A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1,n} \\ a_{21} & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1,n} \\ a_{n,1} & \cdots & a_{n,n-1} & a_{n,n} \\ \end{bmatrix}. $$ 且 $A$ 的特徵值為 $\lambda_1,...,\lambda_n$。 令 $\bx_k \in \mathbb{R}^n$ 的第 $k$ 項為 $1$ 而其它項為 $0$。 因為 $R_A(\bx_k) = \frac{\bx_k\trans A\bx_k}{\bx_k\trans \bx_k} =\bx\trans A\bx = a_{kk}$ 且 $\lambda_1 \leq R_A(\bx_k) \leq \lambda_n$, 因此對所有 $i = 1,\ldots,n$ 都有 $\lambda_1 \leq a_{ii} \leq \lambda_n$。 ##### Exercise 2(b) 令 $$ A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}. $$ 說明 $A$ 的最大特徵值 $\lambda_3 \geq 2$。 $Ans:$ 由 2(a) 可知對所有 $i = 1,\ldots,n$ 都有 $a_{ii} \leq \lambda_3$,所以 $2 \leq \lambda_3$。 ##### Exercise 3 令 $A = \begin{bmatrix} a_{ii} \end{bmatrix}$ 為一 $n\times n$ 實對稱矩陣,且其特徵值為 $\lambda_1 \leq \cdots \leq \lambda_n$。 ##### Exercise 3(a) 證明 $\lambda_1 \leq \frac{1}{n} \sum_{i=1}^n\sum_{j=1}^n a_{ij} \leq \lambda_n$。 :::warning - [x] 是用 $\frac{1}{\sqrt{n}}\bone$ 沒錯,可是它不一定等於 $\bv_k$,也不用等於 $\bv_k$;這題只要說明當 $\bx = \frac{1}{\sqrt{n}}\bone$ 時,$R_A(\bx) = \frac{1}{n} \sum_{i=1}^n\sum_{j=1}^n a_{ij}$。 ::: $Ans:$ 當 $\bx = \begin{bmatrix}\frac{1}{\sqrt{n}}\\\vdots\\\frac{1}{\sqrt{n}}\end{bmatrix}$ 時,$R_A(\bx) = \begin{bmatrix}\frac{1}{\sqrt{n}}\cdots\frac{1}{\sqrt{n}}\end{bmatrix}A\begin{bmatrix}\frac{1}{\sqrt{n}}\\\vdots\\\frac{1}{\sqrt{n}}\end{bmatrix} = \frac{1}{n} \sum_{i=1}^n\sum_{j=1}^n a_{ij}$, 因為 $\lambda_1 \leq R_A(\bx) \leq \lambda_n$, 故 $\lambda_1 \leq \frac{1}{n} \sum_{i=1}^n\sum_{j=1}^n a_{ij} \leq \lambda_n$。 ##### Exercise 3(b) 令 $$ A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}. $$ 說明 $A$ 的最大特徵值 $\lambda_3 \geq \frac{4}{3}$。 :::warning - [x] 用前一題 ::: $Ans:$ 計算 $\frac{1}{3} \sum_{i=1}^3\sum_{j=1}^3 a_{ij} = \frac{4}{3}$, 從上題得知 $\frac{1}{n} \sum_{i=1}^n\sum_{j=1}^n a_{ij} \leq \lambda_n$, 所以 $\frac{1}{3} \sum_{i=1}^3\sum_{j=1}^3 a_{ij} = \frac{4}{3} \leq \lambda_3$。 ##### Exercise 4 令 $A$ 為一 $n\times n$ 實對稱矩陣,且其特徵值為 $\lambda_1 \leq \cdots \leq \lambda_n$。 令 $B$ 為 $A$ 刪掉第一行第一列的矩陣,而其特徵值為 $\mu_1 \leq \cdots \leq \mu_{n-1}$。 證明 $\lambda_1 \leq \mu_1$ 且 $\mu_{n-1} \leq \lambda_n$。 :::warning - [x] 我覺得 $\lambda_A=c_1^2a_{11}+\cdots+c_n^2a_{nn}$ 等式有錯;而且沒說明 $c_i$, $a_{ij}$ 是什麼 - [x] 這題可以取 $B$ 的對應到 $\mu_1$ 的特徵向量 $\bu_1$。可假設其為單位長,並將它補上一個 $0$ 變成 $\bv_1$。如此就有 $\lambda_1 \leq \bv_1\trans A\bv_1 = \bu_1 B\bu_1 = \mu_1$ ::: $Ans:$ 取 $B$ 的對應到 $\mu_1$ 的特徵向量 $\bu_1 = (u_{11},u_{21},\cdots,u_{n1})$。且 $\|\bu_1\| = 1$, 並使 $\bv_1 = (0,u_{11},u_{21},\cdots,u_{n1})$。 因為 $\lambda_1 \leq \bv_1\trans A\bv_1$, 因此 $\lambda_1 \leq \bv_1\trans A\bv_1 = \bu_1\trans B\bu_1 = \mu_1$。 取 $B$ 的對應到 $\mu_n$ 的特徵向量 $\bu_n = (u_{1n},u_{2n},\cdots,u_{nn})$。且 $\|\bu_n\| = 1$, 並使 $\bv_n = (0,u_{1n},u_{2n},\cdots,u_{nn})$。 因為 $\bv_n\trans A\bv_n \leq \lambda_n$, 因此 $\mu_n = \bu_n\trans B\bu_n = \bv_n\trans A\bv_n \leq \lambda_n$。 ##### Exercise 5 令 $$ A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}. $$ 解以下極值問題: maximize $\bx\trans A \bx$, subject to $\|\bx\| = 1$. :::warning - [x] 說明 $\bx$ 為什麼要這樣取 - [x] max --> $\max$ ::: $Ans:$ 將 $A$ 對角化,可變成 $$ A' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}. $$ $$ \ker(A-4I) = \operatorname{span}\left\{\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}\right\}. $$ 又因 $\|\bx\| = 1$, 所以取垂直矩陣 $$ \bx = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}. $$ 因為 $$ R_A(\bx) = \frac{\bx\trans A\bx}{\bx\trans \bx}. $$ 又 $\|\bx\| = 1$,所以只需要算 $\bx\trans A\bx$, $$ \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \end{bmatrix} \begin{bmatrix} 2&1&1 \\ 1&2&1 \\ 1&1&2 \end{bmatrix} \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix} = 4 $$ 所以 $\lambda_3 = \max \bx\trans A\bx=4.$ ##### Exercise 6 已知 $$ A_n = \begin{bmatrix} 0 & 1 & ~ & 0 \\ 1 & 0 & \ddots & ~ \\ ~ & \ddots & \ddots & 1 \\ 0 & ~ & 1 & 0 \end{bmatrix} $$ 的所有特徵值為 $\{2\cos(\frac{2k\pi}{n+1}): k = 1,\ldots, n\}$。 求在 $x_1^2 + \cdots + x_n^2 = 1$ 的限制下, $x_1x_2 + x_2x_3 + \cdots + x_{n-1}x_n$ 的最大值為何。 :::warning - [x] $x_1x_2 + x_2x_3 + \cdots + x_{n-1}x_n = \bx\trans A_n\bx,$ <-- 這部份差一個倍數,所以最後答案也有問題 ::: $Ans:$ 令 $\bx = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$ 得 $x_1x_2 + x_2x_3 + \cdots + x_{n-1}x_n = \frac{1}{2}\bx\trans A_n\bx,$ 且 $\|\bx\| = \sqrt{x_1^2 + \cdots + x_n^2} = 1.$ 根據瑞利商定理 $x_1x_2 + x_2x_3 + \cdots + x_{n-1}x_n$ 的最大值為 $\frac{1}{2}\lambda_n = \frac{1}{2}\max_{ \substack{\bx\in\mathbb{R}^n \\ \bx\neq\bzero} } R_A(\bx) = \frac{1}{2}\max_{ \substack{\bx\in\mathbb{R}^n \\ \|\bx\| = 1} } \bx\trans A_n\bx = \cos(\frac{2n\pi}{n+1}).$ ##### Exercise 7 令 $$ L = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}. $$ 解以下極值問題: minimize $\bx\trans L \bx$, subject to $\|\bx\| = 1$ and $\bx \perp \bone$. 這裡 $\bone$ 為全一向量。 :::info 題目出錯,我把 $\bx = \bone$ 改成 $\bx \perp \bone$ ::: :::warning 懸賞 ::: $Ans:$ $L$ 的特徵值為 $0,1,3$ 其對應的特徵向量分別為 $\bv_0 = \frac{1}{\sqrt{3}} \begin{bmatrix}1 \\ 1 \\ 1\end{bmatrix}$,$\bv_1 = \frac{1}{\sqrt{2}}\begin{bmatrix}0 \\ -1 \\ 1 \end{bmatrix}$,$\bv_3 = \frac{1}{\sqrt{6}}\begin{bmatrix}-2 \\ 1 \\ 1 \end{bmatrix}$。 因為 $\bx \perp \bone$ 因此令 $\bx = c_1\bv_1+c_3\bv_3$, 因為 $\|\bx\| = 1$,$c_1^2 + c_3^2 = 1$。 所以 $R_A(\bx) = \frac{\bx\trans A\bx}{\bx\trans \bx} = \bx\trans A\bx = c_1^2\times 1 + c_3^2\times 3$, 當 $c_1 = 1$、$c_3 = 0$ 時,可得出最小值為 $1$。 ##### Exercise 8 查找各種資源,並描述柯朗–費雪定理(Courant–Fischer Theorem)。 :::warning - [x] $\bw_k-1$ --> $W_{k-1}$ - [x] 第二次的 $W$ 的下標有錯 - [x] $\bx\neq\bzero$ 是後面那邊的 - [x] 引用的時候要看完整,$\lambda_k$ 是第 $k$ 大還是第 $k$ 小? ::: $Ans:$ 參考來源: [https://ccjou.wordpress.com/2010/03/16/hermitian-%E7%9F%A9%E9%99%A3%E7%89%B9%E5%BE%B5%E5%80%BC%E7%9A%84%E8%AE%8A%E5%8C%96%E7%95%8C%E5%AE%9A/] 若 $A$ 為一 Hermitian 矩陣, $$ \min _{ \substack{W_{k-1}} } \max _{\bx\perp W_{k-1} \\ \bx\neq\bzero} = \frac{\bx\trans A\bx}{\bx\trans \bx} =\lambda_k . $$ $$ \max _{ \substack{W_{n-k}} } \min _{\bx\perp W_{n-k} \\ \bx\neq\bzero} = \frac{\bx\trans A\bx}{\bx\trans \bx} =\lambda_k . $$ 其中,前者稱為 $\lambda_k$ 的極小化─極大化原則; 後者稱為 $\lambda_k$ 的極大化─極小化原則。 且 $\lambda_k$ 是指第 $k$ 大。 Courant-Fischer 定理的價值在於: 即便不知道 Hermitian 矩陣的特徵向量, 我們能從極小化─極大化原則,也就是透過變化界定, 來決定 Hermitian 矩陣的特徵值, 所以也稱作最小─最大 (min-max) 定理。 :::info 分數 = 6.5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully