Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    1
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 向量、長度、角度 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). {%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} ```python from lingeo import random_int_vec, draw_two_vec ``` ## Main idea A **vector** over $\mathbb{R}$ of dimension $n$ is a sequence ${\bf x} = (x_1, \ldots, x_n)$ of numbers in $\mathbb{R}$. (In contrast, we often call a number in $\mathbb{R}$ a **scalar**.) The collection of all vectors over $\mathbb{R}$ of dimension $n$ is denoted by $\mathbb{R}^n$. We often use ${\bf 0}$ and ${\bf 1}$ to refer to $(0,\ldots,0)$ and $(1,\ldots,1)$ of appropriate dimensions, respectively. The **length** of a vector ${\bf x} = (x_1,\ldots, x_n)$ is defined as $$\|{\bf x}\| = \sqrt{x_1^2 + \cdots + x_n^2}. $$ The **inner product** of two vectors ${\bf x} = (x_1, \ldots, x_n)$ and ${\bf y} = (y_1, \ldots, y_n)$ is defined as $$\langle{\bf x},{\bf y}\rangle = x_1y_1 + \cdots + x_ny_n. $$ We have the following properties: 1. $\|{\bf x}\| \geq 0$ and the equality holds if and only if ${\bf x} = {\bf 0}$. 2. $\|k{\bf x}\| = |k|\cdot\|{\bf x}\|$. 3. $\|{\bf x}\| + \|{\bf y}\| \geq \|{\bf x} - {\bf y}\|$ (triangle inequality). 4. $\|{\bf x}\|^2 = \langle{\bf x},{\bf x}\rangle$. 5. $\langle{\bf x}_1 + {\bf x}_2,{\bf y}\rangle = \langle{\bf x}_1,{\bf y}\rangle + \langle{\bf x}_2,{\bf y}\rangle$. 6. $\langle k{\bf x},{\bf y}\rangle = k\langle{\bf x},{\bf y}\rangle$. 7. $\langle {\bf x},{\bf y}\rangle = \langle {\bf y},{\bf x}\rangle$. 8. $|\langle {\bf x},{\bf y}\rangle| \leq \|{\bf x}\|\cdot \|{\bf y}\|$ (Cauchy--Schwarz inequality). Thanks to the Cauchy--Schwarz inequality, we define the **angle** between two vectors ${\bf x}$ and ${\bf y}$ as the angle $\theta$ such that $\cos\theta = \frac{\langle{\bf x},{\bf y}\rangle}{\|{\bf x}\|\|{\bf y}\|}$. We ${\bf x}$ and ${\bf y}$ are **orthogonal** if $\langle{\bf x},{\bf y}\rangle = 0$. ## Side stories - cosine law - orthogonal - projection ## Experiments ##### Exercise 1 執行下方程式碼。 令 $O$ 為原點、 $A$ 和 $B$ 分別為 `x`, `y` 的向量終點。 (可以選用自己喜好的 `ramdom_seed`) ```python ### code set_random_seed(0) print_ans = False x = random_int_vec(6) y = random_int_vec(6) print("x =", x) print("y =", y) pic = draw_two_vec(x, y) pic.axes(False) show(pic) if print_ans: print("OA =", x.norm()) print("OB =", y.norm()) print("AB =", (x-y).norm()) cos_cos = (x.norm()**2 + y.norm()**2 - (x-y).norm()**2) / 2 / x.norm() / y.norm() cos_inner = x.inner_product(y) / x.norm() / y.norm() print("cos by cos law =", cos_cos, "=", N(cos_cos)) print("cos by inner product =", cos_inner, "=", N(cos_inner)) ``` ##### Exercise 1(a) 計算 $\overline{OA}$、$\overline{OB}$、和 $\overline{AB}$ 的長度, 並利用**餘絃定理**來計算 $\cos\angle AOB$。 :::warning - [x] 請把所有算式串成句子,大學開始的數學不會只看算式。比如說:令 $\bx = ...$ 及 $\by = ...$。則 ... <-- 這包含下面每一題。 - [x] 交待每一個數字是怎麼出來的,至少 $\cos$ 值要說明一下。 ::: 令 $\bx = (-4,3,5,-5,-5,0) = \overrightarrow{OA}$ 及 ${\bf y} = (3,-3,3,4,-4,-3) = \overrightarrow{OB}$。 則 $\|{\overrightarrow{OA}}\| = \sqrt{100} = 10$, $\|{\overrightarrow{OB}}\| = \sqrt{68} = 2\sqrt{17}$。 另一方面,$\overrightarrow{AB} = \by - \bx = (7,-6,-2,9,1,-3)$ 所以 $\|\overrightarrow{AB}\| = \sqrt{180} = 6\sqrt{5}$。 最後我們得到 $\cos\angle AOB = \frac{\|{\overrightarrow{OA}}\|^2 + \|{\overrightarrow{OB}}\|^2 - \|{\overrightarrow{AB}}\|^2}{2\|{\overrightarrow{OA}}\|\|{\overrightarrow{OB}}\|} = \frac{-3} {10\sqrt{17}}$。 ##### Exercise 1(b) 令 $\theta$ 為 `x`, `y` 之間用內積定出來的夾角﹐ 求 $\cos\theta$。 沿用 1(a) 之 $\overrightarrow{OA}$、$\overrightarrow{OB}$: $$ \overrightarrow{OA} = (-4,3,5,-5,-5,0)\\ \overrightarrow{OB} = (3,-3,3,4,-4,-3) $$ 由內積定義我們得到 $\langle{\overrightarrow{OA}}, {\overrightarrow{OB}}\rangle = -6$。 我們由內積的性質得知 $$-6 = \|{\overrightarrow{OA}}\|\|{\overrightarrow{OB}}\|\cos\angle AOB.$$ 最後得到 $$\cos\angle AOB = \frac{-3}{10\sqrt{17}}.$$ ##### Exercise 1(c) 前兩題算出來總是一樣嗎? 請用代數的方法證明。 :::warning - [x] 第二行的一式和二式中間可以再加一項 - [x] 等號不用移出數學模式外 ::: Sample: It is known that $\overline{OA} = \|{\bf x}\|$, $\overline{OB} = \|{\bf y}\|$, and $\overline{AB} = \|{\bf x} - {\bf y}\|$. Thus, $$ \frac{\overline{OA}^2 + \overline{OB}^2 - \overline{AB}^2}{2\overline{OA}\cdot \overline{OB}} = \frac{\|{\bf x}\|^2 + \|{\bf y}\|^2 - \|{\bf x} - {\bf y}\|^2}{2\|{\bf x}\|\|{\bf y}\|}=\frac{2\langle {\bf x},{\bf y}\rangle}{2\|{\bf x}\|\|{\bf y}\|}=\frac{\langle {\bf x},{\bf y}\rangle}{\|{\bf x}\|\|{\bf y}\|}. $$ <!-- $\frac{\overline{OA}^2 + \overline{OB}^2 - \overline{AB}^2}{2\overline{OA}\cdot \overline{OB}} \frac{\|{\bf x}\|^2 + \|{\bf y}\|^2 - \|{\bf x} - {\bf y}\|^2}{2\|{\bf x}\|\|{\bf y}\|}=\frac{2\langle {\bf x},{\bf y}\rangle}{2\|{\bf x}\|\|{\bf y}\|}= \frac{\langle {\bf x},{\bf y}\rangle}{\|{\bf x}\|\|{\bf y}\|}=\cos\theta$ $\|{\bf x} · {\bf y}\|$=${\|{\bf x}\|\|{\bf y}\|}\cos\theta$ $\cos\theta$=$\frac{\langle {\bf x},{\bf y}\rangle}{\|{\bf x}\|\|{\bf y}\|}$ --> ## Exercises ##### Exercise 2 將每個向量都展開 (像是 ${\bf x} = (x_1,\ldots, x_n)$)﹐ 把每個長度和內積的定義也都展開。 證明 Main idea 中最後列出來的那些性質 (除了三角不等式和柯西不等式以外)。 :::warning - [ ] 寫作盡量避免邏輯符號 [B03](https://sagelabtw.github.io/LA-Tea/style.html) - [ ] as ${x^2} \geq{\bf 0}$ and the equality holds if and only if ${\bf x} = {\bf 0}$ <-- 這句我不知道和前後文怎麼接起來 - [ ] 我看不懂斷句在哪 ::: (1) Recall the **length** of a vector ${\bf x} = (x_1,\ldots, x_n)$ is defined as $$\|{\bf x}\| = \sqrt{x_1^2 + \cdots + x_n^2}. $$ Also, we know $x^2\geq 0$ for any $x\in\mathbb{R}$ and the equality holds if and only if $x = 0$. Since $x_1^2 , \cdots, x_n^2 \geq{\bf 0}$, we have $\|\bx\| \geq 0$. Moveover, when $\|{\bf x}\| = \sqrt{x_1^2 + \cdots + x_n^2} = 0$, ${x_1^2 , \cdots, x_n^2}$ must all be $0$, which made ${\bf x} = {\bf 0}$. :::warning - [x] 藉由代數計算,可以直接驗證 $\|k\bx\| = ...$ 句點 - [x] 試著用 `aligned` 對齊 ::: (2) 藉由代數計算,可以直接驗證 $$ \begin{aligned} \|k{\bf x}\| &= \sqrt{{(kx_1)^2} + \cdots + {(kx_n)^2}} \\ &= |k|\sqrt{x_1^2 + \cdots + x_n^2} \\ &= |k|\cdot\|{\bf x}\|, \end{aligned} $$ 其中 $\bx = (x_1,\ldots, x_n)$。 :::warning - [x] 加文字,後面幾題都是。 ::: (4) 藉由代數計算,可以直接驗證 $$ \langle{\bf x},{\bf x} \rangle = {x_1^2 + \cdots + x_n^2} = \|{\bf x}\|^2. $$ (5) 藉由代數計算,可以直接驗證 $$ \begin{aligned} \langle {\bf x}_1 + {\bf x}_2,{\bf y}\rangle &=({\bf x}_{11} + {\bf x})_{21}{\bf y} + \cdots + ({\bf x}_{1n} + {\bf x}_{2n})\by_n \\ &=({\bf x}_{11}{\bf y} + \cdots + {\bf x}_{1n}{\bf y}_n) + ({\bf x}_{21}{\bf y} + \cdots + {\bf x}_{2n}{\bf y}_{n})\\ &=\langle \bx_1 , \by \rangle + \langle \bx_2 , \by \rangle. \end{aligned} $$ :::warning - [x] $\langle k{\bf x},{\bf y}\rangle = k\langle{\bf x},{\bf y}\rangle$ --> 我們要驗證 $\langle k{\bf x},{\bf y}\rangle = k\langle{\bf x},{\bf y}\rangle$。 - [x] 假設 --> 令 - [x] , --> ,則 - [x] 最後句點 - [x] 下一題類似 ::: (6)我們要驗證 $\langle k{\bf x},{\bf y}\rangle = k\langle{\bf x},{\bf y}\rangle$。 令 ${\bf x} = (x_1,\ldots, x_n)$,${\bf y} = (y_1,\ldots, y_n)$。 藉由代數運算,可以直接驗證 $$ \begin{aligned} \langle k{\bf x},{\bf y}\rangle &= kx_1y_1 + \cdots + kx_ny_n\\ &= k(x_1y_1 + \cdots + x_ny_n)\\ &=k\langle{\bf x},{\bf y}\rangle. \end{aligned} $$ (7)我們要驗證 $\langle{\bf x},{\bf y}\rangle = \langle{\bf y},{\bf x}\rangle$。 令 ${\bf x} = (x_1,\ldots, x_n)$,${\bf y} = (y_1,\ldots, y_n)$。 將 $\langle{\bf x},{\bf y}\rangle$ 展開得到 $x_1y_1+\cdots+x_ny_n$, 再利用乘法交換律將式子改寫成 $y_1x_1+\cdots+y_nx_n = \langle{\bf y},{\bf x}\rangle. $ ##### Exercise 3 證明 $\|{\bf x} \pm {\bf y}\|^2 = \|{\bf x}\|^2 \pm 2\langle{\bf x},{\bf y}\rangle + \|{\bf y}\|^2$。 :::warning - [x] 假設 --> 令 - [x] 缺標點 [B01](https://sagelabtw.github.io/LA-Tea/style.html) - [x] 用 `aligned` ::: 令 ${\bf x} = (x_1,\ldots, x_n)$,${\bf y} = (y_1,\ldots, y_n)$, 則$\|{\bf x} \pm {\bf y}\|^2=\sqrt{(x_1 \pm y_1)^2 + \cdots + (x_n \pm y_n)^2}^2$, 將平方展開後得 $(x_1^2 \pm 2x_1y_1 + y_1^2) + \cdots + (x_n^2 \pm 2x_ny_n + y_n^2)$, 再將式子整理後得到 $$ \sqrt{x_1^2 + \cdots + x_n^2}^2 \pm 2(x_1y_1 + \cdots + x_ny_n) + \sqrt{y_1^2 + \cdots + y_n^2}^2 = \|{\bf x}\|^2 \pm 2\langle{\bf x},{\bf y}\rangle + \|{\bf y}\|^2. $$ ##### Exercise 4 給定兩個向量 ${\bf x},{\bf y}$。 若 ${\bf y}$ 可以寫成兩個分量相加 ${\bf y} = {\bf h} + {\bf w}$﹐ 其中 ${\bf h}$ 和 ${\bf x}$ 垂直(所以 $\langle{\bf h},{\bf x}\rangle = 0$)、 而 ${\bf w}$ 和 ${\bf x}$ 平行(所以 ${\bf w} = k{\bf x}$), 求 ${\bf h}$ 和 ${\bf w}$(用 ${\bf x}$ 和 ${\bf y}$ 表示出來)。 :::warning - [x] 標點 - [x] 第二行不用一直跳出數學模式 - [x] 用 `frac{}{}` - [x] 那個"則"有點太快了 ::: 假設 ${\bf w} = k{\bf x}$ 而 ${\bf y} - {\bf w} ={\bf h}$。 已知 $\langle{\bf h},{\bf x}\rangle = 0 = \langle{\bf y} - {\bf w},{\bf x}\rangle = \langle{\bf y} - k{\bf x},{\bf x}\rangle$。 藉由代數運算得 $0 = \langle{\bf y} - k{\bf x},{\bf x}\rangle = \langle{\bf y},{\bf x}\rangle - k\langle{\bf x},{\bf x}\rangle$,所以 $k = \frac{\langle{\bf y},{\bf x}\rangle}{\langle{\bf x},{\bf x}\rangle}$。 將 $k$ 帶入原式得 ${\bf w} = {\bf x}$$\frac{\langle{\bf y},{\bf x}\rangle}{\langle{\bf x},{\bf x}\rangle}$ 以及 ${\bf h} = {\bf y} - {\bf x}$$\frac{\langle{\bf y},{\bf x}\rangle}{\langle{\bf x},{\bf x}\rangle}$。 ##### Exercise 5 依照以下步驟證明三角不等式和柯西不等式等價。 **三角不等式** 對任意兩個向量 ${\bf x},{\bf y}\in\mathbb{R}^n$ 不等式 $\|{\bf x}\| + \|{\bf y}\| \geq \|{\bf x} - {\bf y}\|$ 皆成立。 **柯西不等式** 對任意兩個向量 ${\bf x},{\bf y}\in\mathbb{R}^n$ 不等式 $|\langle {\bf x},{\bf y}\rangle| \leq \|{\bf x}\|\cdot \|{\bf y}\|$ 皆成立。 ##### Exercise 5(a) 證明若三角不等式成立則柯西不等式成立。 :::warning - [x] $\by$ 是向量怎麼會有正的負的...。開頊可以寫,因為三角不等式對所有 $\bx$ 和 $\by$ 都成立,我們可以把 $\by$ 的位置代入 $-\by$ 得到 $\|\bx\| + \|\by\| \geq \|\bx + \by\|$,因此 $$\|\bx\| + \|\by\| \geq \|\bx \pm \by\|.$$ - [x] 用文字串起來:把三角不等式的兩邊同時平方得到 ...,這等價於 ...,因此 ... ,也就是 ... 。 - [ ] 中英不要雜夾 ::: Sample: Let ${\bf x}$ and ${\bf y}$ be any given vectors in $\mathbb{R}^n$. By the triangle inequality, $\|{\bf x}\| + \|{\bf y}\| \geq \|{\bf x} - {\bf y}\|$. 因為三角不等式對所有 $\bx$ 和 $\by$ 都成立,我們可以把 $\by$ 的位置代入 $-\by$ 得到 $\|\bx\| + \|\by\| \geq \|\bx + \by\|$,因此 $$\|\bx\| + \|\by\| \geq \|\bx \pm \by\|.$$ 把三角不等式的兩邊同時平方得到 ($\|{\bf x}\| + \|{\bf y}\|)^2 \geq (\|{\bf x} \pm {\bf y}\|)^2$, 這等價於 $\|{\bf x}\|^2 + \|{\bf y}\|^2+2\|{\bf x}\|\|{\bf y}\|\geq \|{\bf x}\|^2+ \|{\bf y}\|^2\pm 2\langle {\bf x},{\bf y}\rangle$。 因此 $2\|{\bf x}\|\|{\bf y}\|\geq \pm2\langle {\bf x},{\bf y}\rangle$, 也就是 $\|{\bf x}\|\|{\bf y}\|\geq \pm\langle {\bf x},{\bf y}\rangle$。 Therefore, $|\langle {\bf x},{\bf y}\rangle| \leq \|{\bf x}\|\cdot \|{\bf y}\|$. Since ${\bf x}$ and ${\bf y}$ are arbitrary, the Cauchy--Schwarz inequality holds for any vectors ${\bf x}$ and ${\bf y}$. ##### Exercise 5(b) 證明若柯西不等式成立則三角不等式成立。 :::warning - [x] 怎麼會開頭就 We know that $\|{\bf x}\| + \|{\bf y}\| \geq \|{\bf x} - {\bf y}\|$ 。如果知道了就不用證了。 - [x] 把因果關係和每一步講清楚。 ::: Sample: Let ${\bf x}$ and ${\bf y}$ be any given vectors in $\mathbb{R}^n$. By the Cauchy--Schwarz inequality, $|\langle {\bf x},{\bf y}\rangle| \leq \|{\bf x}\|\cdot \|{\bf y}\|$. Thus, $\|{\bf x}\|\|{\bf y}\|\geq \pm\langle {\bf x},{\bf y}\rangle$. By adding $\|{\bf x}\|^2 + \|{\bf y}\|^2$ on both sides, we get $\|{\bf x}\|^2 + \|{\bf y}\|^2+2\|{\bf x}\|\|{\bf y}\|\geq \|{\bf x}\|^2+ \|{\bf y}\|^2 \pm\ 2\langle {\bf x},{\bf y}\rangle$. By completing the squares, we have ($\|{\bf x}\| + \|{\bf y}\|)^2 \geq (\|{\bf x} - {\bf y}\|)^2$. While both $\|{\bf x}\| + \|{\bf y}\|$ and $\|{\bf x} - {\bf y}\|$ are positive, $\|{\bf x}\| + \|{\bf y}\| \geq \|{\bf x} - {\bf y}\|$. Since ${\bf x}$ and ${\bf y}$ are arbitrary, the triangle inequality holds for any vectors ${\bf x}$ and ${\bf y}$. ##### Exercise 6 依照以下步驟證明柯西不等式。 ##### Exercise 6(a) 證明當 $\|{\bf x}\| = \|{\bf y}\| = 1$ 時柯西不等式成立。 :::warning - [x] 沒標點,句子不完整,前後接不上 - [x] 中英夾雜 ::: Sample: Let ${\bf x}$ and ${\bf y}$ be two vectors of length $1$. Since $\|{\bf x} - {\bf y}\|^2 \geq 0$, we have $\|{\bf x}\|^2+ \|{\bf y}\|^2 - 2\langle {\bf x},{\bf y}\rangle\geq 0$. Since $\|{\bf x} + {\bf y}\|^2 \geq 0$, then $\|{\bf x}\|^2+ \|{\bf y}\|^2$+$2\langle {\bf x},{\bf y}\rangle\geq 0$. Therefore, $\pm2\langle {\bf x},{\bf y}\rangle\geq -2$ and $2 \geq\pm2\langle {\bf x},{\bf y}\rangle$. Therefore, $|\langle{\bf x},{\bf y}\rangle| \leq 1$ whenever $\|{\bf x}\| = \|{\bf y}\| = 1$. ##### Exercise 6(b) 證明對任何非零向量 ${\bf x},{\bf y}\in\mathbb{R}^n$ 柯西不等式皆成立。 :::warning - [ ] 中英夾雜 - [x] 句子不完整,因果關係 - [x] 下一題也是 ::: Sample: Now suppose ${\bf x}$ and ${\bf y}$ be arbitrary nonzero vectors in $\mathbb{R}^n$. Let ${\bf x}' = {\bf x}/\|{\bf x}\|$ and ${\bf y}' = {\bf y}/\|{\bf y}\|$. Thus, $\|{\bf x}'\| = \|{\bf y}'\| = 1$. 帶回 (a) 得到 $|\langle {\bf x}',{\bf y}'\rangle| \leq \ 1$, 也就是$\frac{|\langle{\bf x}, {\bf y}\rangle|}{\|{\bf x}\|\|{\bf y}\|} \leq \ 1$。 故$|\langle {\bf x},{\bf y}\rangle| \leq \|{\bf x}\|\cdot \|{\bf y}\|$。 Therefore, $|\langle {\bf x},{\bf y}\rangle| \leq \|{\bf x}\|\cdot \|{\bf y}\|$ for any nonzero vectors ${\bf x}$ and ${\bf y}$. ##### Exercise 6(c) 考慮剩餘的可能性並完成柯西不等式的證明。 當 $\|{\bf x}\|$ 或 $\|{\bf y}\|$ 等於 $0$ 時,$\|{\bf x}\|\cdot \|{\bf y}\|=0$ 且 $\inp{\bx}{\by} = 0$。 所以 $|\langle {\bf x},{\bf y}\rangle| =\|{\bf x}\|\cdot \|{\bf y}\|$。 **第七題太長所以被移到別區** [Exercise 7](https://hackmd.io/VUEic-L2TW6QKlzljHplZw) :::info 差第七題 目前得分 5/5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully