Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 列運算 Row operations ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$ ```python from lingeo import random_int_list, random_good_matrix ``` ## Main idea Let $A$ be an $m\times n$ matrix $\mathbb{R}^n$. The following three types of operations on a matrix are called **row operations**. 1. swapping: swap the $i$-th and the $j$-th rows. (Denoted as $\rho_i\leftrightarrow\rho_j$.) 2. rescaling: multiply the $i$-th row by a nonzero scalar $k$. (Denoted as $\rho_i:\times k$.) 3. row combination: multiply the $j$-th row by a scalar $k$ and add the result to the $i$-th row. (Denoted as $\rho_i: + k\rho_j$.) Note that for $\rho_i: +k\rho_j$, the scalar $k$ can possibly be zero, but then the operation does nothing. The **pivot** of a row vector is the index of its left-most entry. A matrix $A$ is in the **echelon form** if: 1. Zero rows are below any nonzero rows. 2. From top to the bottom, the pivot of each row strickly moving to the right. Each matrix can be reduced to an echelon from through row operations. If necessary, one may do reduce the matrix further to the form below. A matrix $A$ is in the **reduced echelon form** if: 1. It is in the echelon form. 2. For each nonzero row, the entry at the pivot is $1$. 3. For each nonzero row, the column of $A$ at the pivot is zero except for the entry on this row. The **pivots** of a reduced echelon form is the set of pivots of its rows. The **pivots** of a matrix is the pivots of its reduced echelon form. If $B$ can be obtained from $A$ by some row reduction, then we say $A$ **reduces to** $B$, denoted as $A\rightarrow B$. Each matrix reduces to a unique reduced echelon form. Let $A$ be an $m\times n$ matrix and $\bb$ a vector in $\mathbb{R}^m$. Then the **augmented matrix** of the equation $A\bx = \bb$ is the $m\times (n+1)$ matrix $$\left[\begin{array}{c|c} A & \bb \end{array}\right]. $$ ## Side stories - `A.nullspace` - `A.swap_rows` - `A.rescale_row` - `A.add_muptiple_of_row` - equivalence relation - equivalence clases ## Experiments ##### Exercise 1 執行下方程式碼。 找到矩陣 $A$ 的最簡階梯形式矩陣。 可以手算也可以考慮在下方程式碼加上: 1. $\rho_i\leftrightarrow\rho_j$: `A.swap_rows(i,j)` . 2. $\rho_i: \times k$: `A.rescale_row(i, k)` . 3. $\rho_i: +k\rho_j$: `A.add_multiple_of_row(i, j, k)` . <!-- eng start --> Run the code below. Any find the reduced echelon form of $A$. You may either do it by hand, or use the code below by adding some lines: 1. $\rho_i\leftrightarrow\rho_j$: `A.swap_rows(i,j)` . 2. $\rho_i: \times k$: `A.rescale_row(i, k)` . 3. $\rho_i: +k\rho_j$: `A.add_multiple_of_row(i, j, k)` . <!-- eng end --> ```python ### code set_random_seed(0) print_ans = False A, R, pivots = random_good_matrix(3,5,2, return_answer=True) print("A =") show(A) # A.swap_rows(0,1) # A.rescale_row(1, 1/3) # A.add_multiple_of_row(1, 0, -3) print("After row operations:") show(A) if print_ans: print("The reduced echelon form of A is") show(R) ``` **Answer** $$ A= \begin{bmatrix} 1&-3&18&5&-14\\3&8&49&15&-39\\-8&20&-124&-40&100 \end{bmatrix} $$ OPERATION 1 : $\rho_2: -3\rho_1$           ↓ $$ ~ \begin{bmatrix} 1&-3&18&5&-14\\0&1&-5&0&3\\-8&20&-124&-40&100 \end{bmatrix} $$ OPERATION 2 : $\rho_3: +8\rho_1$           ↓ $$ ~ \begin{bmatrix} 1&-3&18&5&-14\\0&1&-5&0&3\\0&-4&20&0&-12 \end{bmatrix} $$ OPERATION 3 : $\rho_3: +4\rho_2$           ↓ $$ ~ \begin{bmatrix} 1&-3&18&5&-14\\0&1&-5&0&3\\0&0&0&0&0 \end{bmatrix} $$ OPERATION 4 : $\rho_1: +3\rho_2$           ↓ $$ ~ \begin{bmatrix} 1&0&3&5&-5\\0&1&-5&0&3\\0&0&0&0&0 \end{bmatrix} $$ The Reduced Echelon Form of $A$ $$ = \begin{bmatrix} 1&0&3&5&-5\\0&1&-5&0&3\\0&0&0&0&0 \end{bmatrix} $$ :::warning - [x] The Reduced Echelon Form of $A$ (put A as $A$) Have you tried to use the program? ::: ## Exercises ##### Exercise 2 證明每一個列運算都可以被復原。 <!-- eng start --> Show that any row operation is reversible. <!-- eng end --> ##### Exercise 2(a) 若 $A$ 經過列運算 $\rho_i\leftrightarrow\rho_j$ 後得到 $B$。 找一個列運算讓 $B$ 變回 $A$。 <!-- eng start --> Suppose $B$ is obtained from $A$ by applying the row operation $\rho_i\leftrightarrow\rho_j$. Find a row operation that transforms $B$ into $A$. <!-- eng end --> :::warning - [x] Rewrite it with English. - [x] random --> arbitrary - [x] $$ A= \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} $$ The idea is correct. But $A$ might be an $n\times n$ matrix instead of $2\times 2$. Examples: Suppose $B$ is obtained from $A$ by applying the row operation $\rho_i\leftrightarrow\rho_j$. Then by swapping the two rows again, $B$ returns to $A$. That is, $A$ can be obtained from $B$ by applying the row operation $\rho_i\leftrightarrow\rho_j$. ::: $Ans:$ Assume $A$ is a arbitrary $m \times n$ matrix $$ A= \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} $$ By doing row operation $\rho_i\leftrightarrow\rho_j$, we will obtain a matrix $B$. Then by applying the same row operation, $\rho_i\leftrightarrow\rho_j$, to $B$, $B$ will transform back into $A$. Therefore, we get the conclusion that the row operation which transform $B$ into $A$ is $\rho_i\leftrightarrow\rho_j$. ##### Exercise 2(b) 若 $A$ 經過列運算 $\rho_i: \times k$ 後得到 $B$。 找一個列運算讓 $B$ 變回 $A$。 <!-- eng start --> Suppose $B$ is obtained from $A$ by applying the row operation $\rho_i: \times k$. Find a row operation that transforms $B$ into $A$. <!-- eng end --> :::warning Again, you have to consider the genral case instead of a particular $A$. Also, your second operation should be $\rho_2: \times \frac{1}{2}$. - [x] Suppose $A$ is a particular matrix --> We start with an example where $A$ is a particular matrix. - [x] which $A$ is a random $m\times n$ matrix --> ==where== $A$ is ==an arbitrary== $m\times n$ matrix - [x] Similar - [x] the fact --> the observation - [x] Last paragraph: Therefore, we get a conclusion that  :::info For all $A$, if $B$ is obtained from $A$ by applying the row operation $\rho_i: \times k$, then $B$ will transform back into $A$ by the operation $\rho_i: \times \frac{1}{k}$. ::: **Answer** We start with an example where $A$ is a particular matrix. Let $$ A= \begin{bmatrix} 1&2&3&4\\5&6&7&8\\9&10&11&12 \end{bmatrix} $$ OPERATION 1 : $\rho_2: \times 2$ $$ ~ \begin{bmatrix} 1&2&3&4\\10&12&14&16\\9&10&11&12 \end{bmatrix} =B $$ OPERATION 2 : $\rho_2: \times \frac{1}{2}$ $$ ~ \begin{bmatrix} 1&2&3&4\\5&6&7&8\\9&10&11&12 \end{bmatrix} =A $$ In the preceding condition, it is clear that after transforming $A$ into $B$, by doing $\rho_2: ×2$, we are able to transform $B$ back into $A$, by doing $\rho_2: \times \frac{1}{2}$. Thus, we apply the preceding procedure into a general case, where $A$ is a arbitrary $m\times n$ matrix, and $B$ is a matrix obtained from $A$ by applying row operation $\rho_i: \times k$. Similar to the observation on the particular $A$, we are able to transform $B$ back into $A$ by doing $\rho_i: \times \frac{1}{k}$. Therefore, we get a conclusion that  :::info For all $A$, if $B$ is obtained from $A$ by applying the row operation $\rho_i: \times k$, then $B$ will transform back into $A$ by the operation $\rho_i: \times \frac{1}{k}$. ::: ##### Exercise 2(c) 若 $A$ 經過列運算 $\rho_i: + k\rho_j$ 後得到 $B$。 找一個列運算讓 $B$ 變回 $A$。 <!-- eng start --> Suppose $B$ is obtained from $A$ by applying the row operation $\rho_i: + k\rho_j$. Find a row operation that transforms $B$ into $A$. <!-- eng end --> :::warning Same issue. What is the opposite operation of $\rho_i: + k\rho_j$. - [x] random --> arbitrary - [x] It is okay to remove the second paragraph. ::: **Answer** Assuming that $A$ is a arbitrary $m\times n$ matrix, which means that it could be applied in any general cases, and $B$ is a matrix obtained from $A$ by applying row operation $\rho_i: +k\rho_j$. By applying row operation $\rho_i: -k\rho_j$, $B$ returns to $A$. Therefore, the opposite operation of $\rho_i: +k\rho_j$ should be $\rho_i: -k\rho_j$. ##### Exercise 3 令 $A$ 為一矩陣其各列向量為 $\br_1,\ldots,\br_m$。 依照下面的步驟證明列運算不會改變列空間。 <!-- eng start --> Let $A$ be a matrix and $\br_1,\ldots,\br_m$ its rows. Use the given instructions to prove that row operations do not change the row space. <!-- eng end --> ##### Exercise 3(a) 若 $A$ 經過列運算 $\rho_i\leftrightarrow\rho_j$ 後得到 $B$。 證明 $\Row(A) = \Row(B)$。 <!-- eng start --> Suppose $B$ is obtained from $A$ by applying the row operation $\rho_i\leftrightarrow\rho_j$. Show that $\Row(A) = \Row(B)$. <!-- eng end --> ##### Exercise 3(b) 若 $A$ 經過列運算 $\rho_i: \times k$ 後得到 $B$。 證明 $\Row(A) = \Row(B)$。 <!-- eng start --> Suppose $B$ is obtained from $A$ by applying the row operation $\rho_i: \times k$. Show that $\Row(A) = \Row(B)$. <!-- eng end --> ##### Exercise 3(c) 若 $A$ 經過列運算 $\rho_i: + k\rho_j$ 後得到 $B$。 證明 $\Row(A) = \Row(B)$。 <!-- eng start --> Suppose $B$ is obtained from $A$ by applying the row operation $\rho_i: + k\rho_j$. Show that $\Row(A) = \Row(B)$. <!-- eng end --> ##### Exercise 4 令 $A$ 為一矩陣其各列向量為 $\br_1,\ldots,\br_m$ 而 $\bb = (b_1,\ldots,b_m)\trans$。 令 $A'$ 為方程組 $A\bx = \bb$ 增廣矩陣。 依照下面的步驟證明列運算不會改變解集合。 <!-- eng start --> Let $A$ be a matrix and $\br_1,\ldots,\br_m$ its rows. Let $\bb = (b_1,\ldots,b_m)\trans$. Let $A'$ be the augmented matrix of $A\bx = \bb$. Use the given instructions to prove that row operations do not change the row space. <!-- eng end --> ##### Exercise 4(a) 若 $A'$ 經過列運算 $\rho_i\leftrightarrow\rho_j$ 後得到 $B'$。 證明兩增廣矩陣對應到的方程組有一樣的解集合。 <!-- eng start --> Suppose $B'$ is obtained from $A'$ by applying the row operation $\rho_i\leftrightarrow\rho_j$. Show that the two systems of linear equations corresponding to $A'$ and $B'$ have the same solution set. <!-- eng end --> ##### Exercise 4(b) 若 $A'$ 經過列運算 $\rho_i: \times k$ 後得到 $B'$。 證明兩增廣矩陣對應到的方程組有一樣的解集合。 <!-- eng start --> Suppose $B'$ is obtained from $A'$ by applying the row operation $\rho_i: \times k$. Show that the two systems of linear equations corresponding to $A'$ and $B'$ have the same solution set. <!-- eng end --> ##### Exercise 4(c) 若 $A$ 經過列運算 $\rho_i: + k\rho_j$ 後得到 $B$。 證明兩增廣矩陣對應到的方程組有一樣的解集合。 <!-- eng start --> Suppose $B'$ is obtained from $A'$ by applying the row operation $\rho_i: + k\rho_j$. Show that the two systems of linear equations corresponding to $A'$ and $B'$ have the same solution set. <!-- eng end --> ##### Exercise 5 依照下面的步驟證明「可化簡到」是一個**等價關係** 。 <!-- eng start --> Use the given instructions to prove that "reduce to" is an **equivalence relation** . <!-- eng end --> ##### Exercise 5(a) 證明反身性: $A\rightarrow A$。 <!-- eng start --> Prove that "reduce to" is reflexive: $A\rightarrow A$. <!-- eng end --> ##### Exercise 5(b) 證明對稱性: 若 $A\rightarrow B$﹐則 $B\rightarrow A$。 <!-- eng start --> Prove that "reduce to" is symmetric: If $A\rightarrow B$, then $B\rightarrow A$. <!-- eng end --> ##### Exercise 5(c) 證明遞移性: 若 $A\rightarrow B$ 且 $B\rightarrow C$,則 $A\rightarrow C$。 <!-- eng start --> Prove that "reduce to" is transitive: If $A\rightarrow B$ and $B\rightarrow C$, then $A\rightarrow C$. <!-- eng end --> ##### Exercise 5(d) 如此一來「可化簡到」可以幫所有 $m\times n$ 矩陣分類: 隨便拿出一個 $m\times n$ 矩陣 $A$,取出所有可以從 $A$ 化簡到的矩陣﹐如此一來會形成一個**等價類** 。 若 $\mathcal{M}_{m\times n}$ 為所有 $m\times n$ 矩陣的集合, 我們通常用 $\mathcal{M}_{m\times n} / \rightarrow$ 來表示所有等價類所形成的集合。 利用最間階梯形式矩陣是唯一的這個性質,來說明怎麼判斷兩個矩陣是否落在同一個等價類中。 <!-- eng start --> As a consequence, "reduce to" gives a partition to the set of $m\times n$ matrices: For any $m\times n$ matrix $A$, the set of matrices that $A$ reduces to is called an **equivalence class** . Let $\mathcal{M}_{m\times n}$ be the set of all $m\times n$ matrices. Then we define $\mathcal{M}_{m\times n} / \rightarrow$ as the set of all equivalence classes. Recall that every matrix has a unique reduced echelon form. Use this fact to provide a method that can determines whether two matrices are in the same equivalence class. <!-- eng end --> ##### Exercise 6 若 $A$ 是一個 $m\times n$ 矩陣。 證明 $A$ 可以化簡到的最簡階梯形式矩陣是唯一的。 <!-- eng start --> Let $A$ be an $m\times n$ matrix. Show that $A$ reduces to a unique reduced echelon form. <!-- eng end --> ##### Exercise 6(a) 證明「$A$ 可以化簡到的最簡階梯形式矩陣是唯一的。」這個敘述在 $n=1$ 時是正確的。 <!-- eng start --> Show that the statement "$A$ reduces to a unique reduced echelon form" is correct when $n = 1$. <!-- eng end --> ##### Exercise 6(b) 假設「$A$ 可以化簡到的最簡階梯形式矩陣是唯一的。」這個敘述在 $n=k$ 時是正確的。 考慮一個 $n=k+1$ 的矩陣,並它寫成 $\begin{bmatrix} A' & \ba\end{bmatrix}$。 根據假設,$A'$ 的最簡階梯式是唯一的,我們把它記作 $R'$。 說明 $A$ 化簡到最簡階梯形式時會是 $\begin{bmatrix} R' & \br\end{bmatrix}$。 (因此唯一有可能不一樣的就是最後一行。) <!-- eng start --> Suppose the statement "$A$ reduces to a unique reduced echelon form" is correct when $n = k$. Then we consider a matrix with $n = k+1$, and we may write it as $\begin{bmatrix} A' & \ba\end{bmatrix}$. By the assumption, the reduced echelon form of $A'$ is unique, say it is $R'$. Show that the reduced echelon form of $A$ has the form $\begin{bmatrix} R' & \br\end{bmatrix}$. (That is, if the reduced echelon form is not unqiue, then the only potential differences occur in the last column.) <!-- eng end --> ##### Exercise 6(c) 我們把 $R'$ 的行寫成 $\bu_1,\ldots,\bu_k$。 考慮兩種狀況: 首先,若 $\ker(A)$ 中有一個向量 $\bv = (c_1,\ldots, c_{k+1})$ 其 $c_{k+1}\neq 0$。 利用 $\ker(A) = \ker\left(\begin{bmatrix} R' & \br \end{bmatrix}\right)$ 說明 $\br = -\frac{1}{c_{k+1}}(c_1\bu_1 + \cdots + c_k\bu_k)$ 是唯一的選擇。 <!-- eng start --> Let $\bu_1,\ldots,\bu_k$ be the columns of $R'$. Consider two cases: The first case is when there is a vector $\bv = (c_1,\ldots, c_{k+1})$ in $\ker(A)$ such that $c_{k+1}\neq 0$. Use the fact that $\ker(A) = \ker\left(\begin{bmatrix} R' & \br \end{bmatrix}\right)$ to show that $\br = -\frac{1}{c_{k+1}}(c_1\bu_1 + \cdots + c_k\bu_k)$ is the unique choice for the last column of the reduced echelon form. <!-- eng end --> ##### Exercise 6(d) 第二種狀況,$\ker(A)$ 中的所有向量 $\bv = (c_1,\ldots, c_{k+1})$ 都是 $c_{k+1} = 0$。 說明這種狀況下 $\ba\notin\Col(A')$ 且 $\br\notin\Col(R')$。 如果 $R'$ 有 $h$ 個非零的列,說明 $\br$ 一定在第 $h+1$ 項是 $1$ 而其它項都是 $0$。 <!-- eng start --> The second case is when every vector $\bv = (c_1,\ldots, c_{k+1})$ in $\ker(A)$ has $c_{k+1}= 0$. Show that $\ba\notin\Col(A')$ and $\br\notin\Col(R')$. Therefore, $\br$ must be a vector whose $(h+1)$-entry is $1$ while other entries are zero, where $h$ is the number of nonzero rows in $R'$. <!-- eng end --> :::info collaboration: 2 3 problems: 3 quality control: 1 moderator: 1 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully