dogdogeatcatcat
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Publish Note

      Everyone on the web can find and read all notes of this public team.
      Once published, notes can be searched and viewed by anyone online.
      See published notes
      Please check the box to agree to the Community Guidelines.
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Publish Note

Everyone on the web can find and read all notes of this public team.
Once published, notes can be searched and viewed by anyone online.
See published notes
Please check the box to agree to the Community Guidelines.
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
# PBjar CTF 2021 Team. OAO Point. 3094 (9/9 Crypto) Rank. 95 ## Convert enc = 666c61677b6469735f69735f615f666c346767675f68317d ```python= import binascii from output import * flag = binascii.unhexlify(enc) print(flag) ``` :::success flag{dis_is_a_fl4ggg_h1} ::: ## ReallynotSecureAlgorithm :::spoiler **Source Code** ```python= from Crypto.Util.number import * with open('flag.txt','rb') as f: flag = f.read().strip() e=65537 p=getPrime(128) q=getPrime(128) n=p*q m=bytes_to_long(flag) ct=pow(m,e,n) print (p) print (q) print (e) print (ct) ``` ::: Standard RSA :) :::spoiler **Script** ```python= from Crypto.Util.number import long_to_bytes from output import * pt = pow(c, pow(e, -1, (p-1)*(q-1)), p*q) flag = long_to_bytes(pt) print(flag) ``` ::: :::success flag{n0t_to0_h4rd_rIt3_19290453} ::: ## Not_Baby :::spoiler **Source Code** ```python= from Crypto.Util.number import * with open('flag.txt','rb') as g: flag = g.read().strip() with open('nums.txt','r') as f: s=f.read().strip().split() a=int(s[0]) b=int(s[1]) c=int(s[2]) e=65537 n=a**3+b**3-34*c**3 m=bytes_to_long(flag) ct=pow(m,e,n) print ("n: ",n) print ("e: ",e) print ("ct: ",ct) ``` ::: One can factor the modulus $n$ using FactorDB API ... :::spoiler **Script** ```python= from pwn import * from factordb.factordb import FactorDB from output import * f = FactorDB(n) f.connect() primes = f.get_factor_from_api() phi = 1 for _ in primes: p = int(_[0]) exp = _[1] phi *= (p ** (exp - 1)) * (p-1) pt = pow(ct, pow(65537, -1, phi), n) from Crypto.Util.number import long_to_bytes flag = long_to_bytes(pt) print(flag) ``` ::: :::success flag{f4ct0ring_s0000oo00000o00_h4rd} ::: ## Knapsack :::spoiler **Source Code** ```python= from Crypto.Util.number import getPrime from sympy import nextprime from random import randint flag = open('./flag.txt', 'rb').read().strip() flagbits = bin(int.from_bytes(flag, 'big'))[2:] n, r = len(flagbits), getPrime(8) w = [randint(1, 69)] for i in range(1, n): w.append(randint(sum(w[:i]) + 1, w[-1] * r)) q = nextprime(r * w[-21]) b = [r * i % q for i in w] c = sum((0 if i == '0' else 1) * j for i, j in zip(flagbits, b)) f = open('./output.txt', 'w') print('b: ' + str(b), file = f) print('c: ' + str(c), file = f) f.close() ``` ::: Standard Knapsack cryptosystem, just perform [LDA attack](https://eprint.iacr.org/2007/066.pdf) :::spoiler **Script** ```python= # Sage from output import * n = len(Public_key) L = Matrix(ZZ, n+1, n+1) N = ceil(n^0.5 / 2) for i in range(n + 1): for j in range(n + 1): if j == n and i < n: L[i, j] = 2 * N * Public_key[i] elif j == n: L[i, j] = 2 * N * enc_Flag elif i == j: L[i, j] = 2 elif i == n: L[i, j] = 1 else: L[i, j] = 0 B = L.LLL() for i in range(n + 1): if B[i, n] != 0: continue if all(v == -1 or v == 1 for v in B[i][:n]): ans = [ (-B[i, j] + 1) // 2 for j in range(n)] calc_sum = sum(map(lambda x: x[0] * x[1], zip(Public_key, ans))) if calc_sum == enc_Flag: binary_Flag = "" for _ in range(n): binary_Flag += str(ans[_]) Flag = int(binary_Flag, 2) print(Flag) ``` ::: :::success flag{b4d_r_4nd_q_1s_sc4ry} ::: ## MRSA :::spoiler **Source Code** ```python= from Crypto.Util.number import * with open('flag.txt','rb') as f: flag = f.read().strip() e=65537 p=getPrime(256) q=getPrime(128) n=p*q m=bytes_to_long(flag) ct=pow(m,e,n) print ('n:',n) print ('e:',e) print ('ct:',ct) def enc(msg): print (p%msg) try: br="#" print (br*70) print ("Now here's the More part!!!") print ("Enter some number, and I will encrypt it for you") print ("But you gotta follow the condition that your number gotta be less than q (and like legitamite)") print (br*70) s=int(input("Enter: ").strip()) assert(s>0 and s<q) enc(s) except: print ("Bruh why you be like this") exit() ``` ::: We can ask for the residue of $n$ divided by our input $k$. A straightforward solution is: 1. Send $k = 2^{127}$ to the server and get the last $127$-bits of $p$ 2. Perform partial $p$ exposure attack (Modify [script](https://github.com/mimoo/RSA-and-LLL-attacks) from mimoo) :::spoiler **Script** ```python= # Sage from __future__ import print_function import time debug = False # display matrix picture with 0 and X def matrix_overview(BB, bound): for ii in range(BB.dimensions()[0]): a = ('%02d ' % ii) for jj in range(BB.dimensions()[1]): a += '0' if BB[ii,jj] == 0 else 'X' a += ' ' if BB[ii, ii] >= bound: a += '~' print(a) def coppersmith_howgrave_univariate(pol, modulus, beta, mm, tt, XX): # # init # dd = pol.degree() nn = dd * mm + tt # # Coppersmith revisited algo for univariate # # change ring of pol and x polZ = pol.change_ring(ZZ) x = polZ.parent().gen() # compute polynomials gg = [] for ii in range(mm): for jj in range(dd): gg.append((x * XX)**jj * modulus**(mm - ii) * polZ(x * XX)**ii) for ii in range(tt): gg.append((x * XX)**ii * polZ(x * XX)**mm) # construct lattice B BB = Matrix(ZZ, nn) for ii in range(nn): for jj in range(ii+1): BB[ii, jj] = gg[ii][jj] # display basis matrix if debug: matrix_overview(BB, modulus^mm) # LLL BB = BB.LLL() # transform shortest vector in polynomial new_pol = 0 for ii in range(nn): new_pol += x**ii * BB[0, ii] / XX**ii # factor polynomial potential_roots = new_pol.roots() # print("potential roots:", potential_roots) # test roots roots = [] for root in potential_roots: if root[0].is_integer(): result = polZ(ZZ(root[0])) if gcd(modulus, result) >= modulus^beta: roots.append(ZZ(root[0])) # return roots N = 22462929226230698839733727530532826254264355600156744007766926652422587544315761736758772358470826527492517915601901 p_low = 123816289112636220809301414050217986899 F.<x> = PolynomialRing(Zmod(N), implementation='NTL'); pol = 2^127 * x + p_low pol = pol.monic() dd = pol.degree() # PLAY WITH THOSE: beta = 0.6 # we should have q >= N^beta epsilon = beta / 7 # <= beta/7 mm = ceil(beta**2 / (dd * epsilon)) # optimized tt = floor(dd * mm * ((1/beta) - 1)) # optimized XX = ceil(N**((beta**2/dd) - epsilon)) # we should have |diff| < X # Coppersmith start_time = time.time() roots = coppersmith_howgrave_univariate(pol, N, beta, mm, tt, XX) # output print("\n# Solutions") print("we found:", roots) print(("in: %s seconds " % (time.time() - start_time))) p = 2^127 * roots[0] + p_low q = N // p e = 65537 ct = 783513924331267748616897862708377643116691425522576921126356389765414000280824908377536276625570472081680799255651 pt = pow(ct, pow(e, -1, (p-1)*(q-1)), N) from Crypto.Util.number import long_to_bytes flag = long_to_bytes(pt) print(flag) ``` ::: :::success flag{1dk_what_to_wr1te_h3re_s0_hii_ig} ::: ## leftovers :::spoiler **Source Code** ```python= from random import * def gen(): mod=randint(10**9,10**10) while (mod%2==0): mod=randint(10**9,10**10) return mod mod=gen() small=mod while True: for i in range(2,int((mod+5)**(1/2))): if mod%i==0: small=i break if small!=mod: mod*=small break mod=gen() lst=[] for i in range(small-1): lst.append(1) r=randint(min(10,small-1),small*3) for i in range(r): lst.append(0) shuffle(lst) print ("Alright, I will send you a string, where each char contains either 0 or 1.") print ("Then you will send me a list of integers back with the same size, separated by spaces.") print ("Now for each number in your list, a, if it satisfies a to the power of "+str(small)+" is congruent to 1 mod "+str(mod)+" it will encode to 1.") print ("Otherwise, your number will encode to 0. Now I will concattenate all of your encoded numbers into a string.") print ("If this string equals the original string I sent you, then you will get the flag :yayy:.") print ("One final caveat: all your numbers must be unique and positive integers greater than 1 and less than "+str(mod)+".") string="" for i in lst: string+=str(i) print (string) s=input("Enter: ").strip().split() s=[int(i) for i in s] check=True for i in s: if i>=mod or i<=1: check=False break check=check & (len(s)==len(lst)) check=check & (len(s)==len(set(s))) cs="" for i in s: if pow(i,small,mod)==1: cs+="1" else: cs+="0" check=check & (cs==string) if check: with open('flag.txt','rb') as f: flag = f.read().strip() print (flag) else: print ("Better luck next time!") ``` ::: The server chooses a random number $n$ around $10^{10}$ and its smallest prime divisor $p$. Our goal is to find $p-1$ different non-trivial elements $a_1, \dots, a_{p-1}$ in $\mathbb{Z}/n\mathbb{Z}$ such that $$a_{i}^p \equiv 1 \pmod{n}, \quad \forall i = 1, \dots, p-1$$ and different $k$ different elements $b_1, \dots, b_k$ in $\mathbb{Z}/n\mathbb{Z}$ such that $$b_{i}^p \not\equiv 1 \pmod{n}, \quad \forall i = 1, \dots, k$$ * **Lazy.** Use solve_mod function :) * **Non-Lazy.** Factorize $n$ and brute-force all roots for each prime power. Apply CRT to get $p$-th roots of $n$ :::spoiler **Script** ```python= mod = 13373207811 small = 3 lst = "0110" x = var('x') roots = solve_mod([x^small == 1], mod) print(roots) cnt1, cnt2 = 0, 1 ans = [] for _ in range(len(lst)): c = lst[_] if c == "0": ans += [str(cnt1 + 2)] cnt1 += 1 else: ans += [str(roots[cnt2][0])] cnt2 += 1 payload = ' '.join(ans) print(payload) ``` ::: :::success flag{pr1mes_r_pr3tty_sp3c14lll} ::: ## Not_Baby_Fixed :::spoiler **Source Code** ```python= from Crypto.Util.number import * with open('flag.txt','rb') as g: flag = g.read().strip() with open('nums.txt','r') as f: s=f.read().strip().split() a=int(s[0]) b=int(s[1]) c=int(s[2]) e=65537 n=a**3+b**3-34*c**3 m=bytes_to_long(flag) ct=pow(m,e,n) print ('n:',n) print ('e:',e) print ('ct:',ct) ``` ::: It turns out the numbers $a,b,c$ satisfying $$ a = 15x^2, \quad b = 7y^2, \quad c = 3xy$$ where $$ \begin{align*} x & = 321329349024937022728435772726127082487 \\ y & = 302518462040600437690188095770599287567 \end{align*} $$ Then, we may factor $n$ by Sage $$ \begin{align*} n & = a^3+b^3-34c^3 \\ & = 3375x^6+343y^6-918x^3y^3 \\ & = (15x^2+3xy+7y^2)(225x^4-45x^3y-96x^2y^2-21xy^3+49y^4) \end{align*} $$ ```python= # Sage P.<x,y> = PolynomialRing(ZZ) f = 3375*x^6 - 918*x^3*y^3 + 343*y^6 f.factor() ``` :::spoiler **Script** ```python= # Sage x = 321329349024937022728435772726127082487 y = 302518462040600437690188095770599287567 a = 15*x^2 + 3*x*y + 7*y^2 b = 225*x^4 - 45*x^3*y - 96*x^2*y^2 - 21*x*y^3 + 49*y^4 phi = 1 factors, exponents = zip(*factor(a)) for f, e in zip(factors, exponents): phi *= f ** (e-1) * (f-1) factors, exponents = zip(*factor(b)) for f, e in zip(factors, exponents): phi *= f ** (e-1) * (f-1) e = 65537 ct = 1918452064660929090686220330495385310745803950329608928110672560978679963497394969369363585721389729566306519544561789659164639271919010791127784820214512488663422537225906608133719652453804000168907004058397487865279113133220466050285 pt = pow(ct, pow(e, -1, phi), a*b) from Crypto.Util.number import long_to_bytes flag = long_to_bytes(pt) print(flag) ``` ::: :::success flag{plz_n0_guess_sum_of_a_b_c_d1vides_n} ::: ## ILoveYou3000 :::spoiler **Source Code** ```python= import random from Crypto.Util.number import * def newflag(oldflag): s=list(b"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPWRSTUVWXYYZ") for i in range(random.randint(1,10)): oldflag=long_to_bytes(random.choice(s))+oldflag for i in range(random.randint(1,10)): oldflag=oldflag+long_to_bytes(random.choice(s)) return oldflag flag = b"flag{testing_flag}" flag=newflag(flag) m=bytes_to_long(flag) def cooooolerRandom(x,y): base=random.randint(2,5) e=base operation=random.choice([-1,1]) #subtraction or addition _range=random.randint(1,6) #rolling some dice change=sum([random.randint(-_range,_range) for i in range(random.randint(1,100))]) #chillllly am I right? e*=(x+operation*change) operation2=random.choice([-1,1]) #subtraction or addition _range=random.randint(1,6) #rolling some more dice change2=sum([random.randint(-_range,_range) for i in range(random.randint(1,100))]) #someone get me a blanket pleasee e*=(y+operation2*change2) return e+base,base example_count=int(input("How many examples do you want?: ")) for i in range(example_count): p=getPrime(256) q=getPrime(256) n=p*q assert(m<n) e,b=cooooolerRandom(p,q) ct=pow(m,e,n) print("Ciphertext: ", ct) print("Modulus: ", n) print("Base: ", b) ``` ::: In one connection, the server generates $3000$ modulus $n_i=p_iq_i$ and encrypts the padding flag as follows $$ ct_{i} \equiv m^{b_i(p+r_{i_1})(q+r_{i_2})+b_i} \pmod{n_i} $$ It only gives us $ct, b$ and $n_i$. According to Euler, $$m^{(p-1)(q-1)} \equiv 1 \pmod{n_i} $$ We hope that $r_{i_1}, r_{i_2}$ are $-1$ and thus, $ct_{i} \equiv m^{b_{i}} \pmod{n_{i}}$. In fact, the probability of $r_{i_1} = r_{i_2} = -1$ is big. We may run a simple simulation locally. One could, in average, find such a sample in $600$ samples. ```python= import random def test(): operation=random.choice([-1,1]) #subtraction or addition _range=random.randint(1,6) #rolling some dice change=sum([random.randint(-_range,_range) for i in range(random.randint(1,100))]) #chillllly am I right? operation2=random.choice([-1,1]) #subtraction or addition _range=random.randint(1,6) #rolling some more dice change2=sum([random.randint(-_range,_range) for i in range(random.randint(1,100))]) #someone get me a blanket pleasee if operation * change == -1 and operation2 * change2 == -1: return True else: return False cnt = 0 for _ in range(300000): if test(): cnt += 1 print(_) print(cnt) ``` Since $m$ may be much larger than $\sqrt[b_{i}]{n_{i}}$, we cannot simply take ${i}$-th root of $ct_{i}$. But we can apply Hastad broadcast attack! In average, we get $750$ samples with $b_{i} = 2$. We can expect to find $2$ nice samples with $b_{i} = 2$. :::spoiler **Script** ```python= from pwn import * from Crypto.Util.number import long_to_bytes from decimal import * getcontext().prec = 400 def conn(local): if local == 1: r = remote("143.198.127.103", 42010) else: r = process("source.py") return r def get_sample(r): r.recvuntil("Ciphertext: ") ct = int(r.recvline().strip()) r.recvuntil("Modulus: ") n = int(r.recvline().strip()) r.recvuntil("Base: ") b = int(r.recvline().strip()) return ct, n, b def lucky(r): samples = 3000 r.recvuntil("How many examples do you want?: ") r.sendline(str(samples)) ct2, mod = [], [] for _ in range(samples): ct, n, b = get_sample(r) if b == 2: ct2 += [ct] mod += [n] for i in range(len(ct2)): for j in range(len(ct2)): if j == i: continue CRT = (ct2[i] * mod[j] * pow(mod[j], -1, mod[i]) + \ ct2[j] * mod[i] * pow(mod[i], -1, mod[j])) % (mod[i] * mod[j]) m = int(Decimal(CRT) ** (Decimal(1) / Decimal(2))) flag = long_to_bytes(m) if b"flag" in flag: return flag return None while True: r = conn(1) res = lucky(r, ct2, mod) r.close() if res: print(res) break ``` ::: ## MRSA2 :::spoiler **Source Code** ```python= from Crypto.Util.number import * with open('flag.txt','rb') as f: flag = f.read().strip() e=65537 p=getPrime(256) q=getPrime(256) n=p*q phi=(p-1)*(q-1) m=bytes_to_long(flag) d=pow(e,-1,phi) ct=pow(m,e,n) print ('n:',n) print ('e:',e) print ('ct:',ct) def enc(msg): print (d%msg) try: br="#" print (br*70) print ("Now here's the More part!!!") print ("Enter some number, and I will encrypt it for you") print ("But you gotta follow the condition that your number gotta be less than 2^140 (and like legitamite)") print (br*70) s=int(input("Enter: ").strip()) assert(s>0 and s<2**140) enc(s) except: print ("Bruh why you be like this") exit() ``` ::: We can ask for the residue of $d$ divided by our input $k$. A straightforward solution is: 1. Send $k = 2^{138}$ to the server and get the last $138$-bits of $d$, say $d_{0}$ 2. Notice that $$ed = 1 + c\phi{(n)} \quad \text{where} \quad c < e$$ It follows that $$ed_0 \equiv 1 + c(n-p-\frac{n}{p}+1) \pmod{2^{138}}$$ So we can get all possibilities of least $138$-bits of $p$ 2. Perform again partial $p$ exposure attack (Modify [script](https://github.com/mimoo/RSA-and-LLL-attacks) from mimoo) :::spoiler **Script** ```python= # Sage from __future__ import print_function import time # display matrix picture with 0 and X def matrix_overview(BB, bound): for ii in range(BB.dimensions()[0]): a = ('%02d ' % ii) for jj in range(BB.dimensions()[1]): a += '0' if BB[ii,jj] == 0 else 'X' a += ' ' if BB[ii, ii] >= bound: a += '~' print(a) def coppersmith_howgrave_univariate(pol, modulus, beta, mm, tt, XX): dd = pol.degree() nn = dd * mm + tt # change ring of pol and x polZ = pol.change_ring(ZZ) x = polZ.parent().gen() # compute polynomials gg = [] for ii in range(mm): for jj in range(dd): gg.append((x * XX)**jj * modulus**(mm - ii) * polZ(x * XX)**ii) for ii in range(tt): gg.append((x * XX)**ii * polZ(x * XX)**mm) # construct lattice B BB = Matrix(ZZ, nn) for ii in range(nn): for jj in range(ii+1): BB[ii, jj] = gg[ii][jj] # LLL BB = BB.LLL() # transform shortest vector in polynomial new_pol = 0 for ii in range(nn): new_pol += x**ii * BB[0, ii] / XX**ii # factor polynomial potential_roots = new_pol.roots() # print("potential roots:", potential_roots) # test roots roots = [] for root in potential_roots: if root[0].is_integer(): roots.append(root[0]) return roots import multiprocessing n = 6538906996876211622159813771898634542490427964432296104602802174964246398504084361075456100475447139001712152771117230602533691744124398724816978553787959 kbits = 138 d0 = 215828658855119428266805137903011920281601 e = 257 ct = 3561636066096712802219233065256334728039796982298930748171850418458732632647463402398904825272481505558815292669878999929431185631673938890831438880807053 def partial_p(p0): F.<x> = PolynomialRing(Zmod(n), implementation='NTL'); pol = 2^kbits * x + p0 pol = pol.monic() dd = pol.degree() # PLAY WITH THOSE: beta = 0.5 # we should have q >= N^beta epsilon = beta^2 - 119 / 512 # <= beta/7 mm = ceil(beta**2 / (dd * epsilon)) # optimized tt = floor(dd * mm * ((1/beta) - 1)) # optimized XX = ceil(n**((beta**2/dd) - epsilon)) # we should have |diff| < X # Coppersmith start_time = time.time() roots = coppersmith_howgrave_univariate(pol, n, beta, mm, tt, XX) for r in roots: p = 2^kbits * r + p0 if n % p == 0 and p < n: print(p) return p return None def solve(ks): X = var('X') for k in ks: results = solve_mod([e*d0*X - k*X*(n-X+1) + k*n == X], 2^kbits) for x in results: p0 = ZZ(x[0]) p = partial_p(p0) if p: return p print(k) return None if __name__ == '__main__': solve(range(1, e)) ``` ::: :::success flag{0ops_m4yb3_4_b1t_t000o000oo00o0_much_rsa} :::

Import from clipboard

Paste your webpage below. It will be converted to Markdown.

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template is not available.
Upgrade
All
  • All
  • Team
No template found.

Create custom template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

How to use Slide mode

API Docs

Edit in VSCode

Install browser extension

Get in Touch

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

No updates to save
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully