Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 分配律、拉普拉斯展開 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}}$ ```python from lingeo import random_int_list ``` ## Main idea The determinant function satisfies the **distributive law** on each row. That is, $$ \det\begin{bmatrix} - & \ba\trans + \bb\trans & - \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix} = \det\begin{bmatrix} - & \ba\trans & - \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix} + \det\begin{bmatrix} - & \bb\trans & - \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix}. $$ Since one may swap two rows or take the transpose without chaning the determinant, the distributive law holds for any row and any column. If we think of the determinant $\det(A)$ as a function on $n$ row vectors $f(\br_1,\ldots,\br_n)$, then $f$ is linear on each vector individually. That is, $$ \begin{aligned} f( \ldots, \ba + \bb, \ldots ) &= f( \ldots, \ba, \ldots ) + f( \ldots, \bb, \ldots ), \\ f( \ldots, k\ba, \ldots ) &= k f( \ldots, \ba, \ldots ). \end{aligned} $$ A function with this property is said to be **multilinear**. Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ be an $n\times n$ matrix. Let $\br_1, \ldots, \br_n$ be the rows of $A$. Define $A(i,j)$ as the submatrix obtained from $A$ by removing the $i$-th row and the $j$-th column. By expanding the first row, we have $$ \begin{aligned} \det(A) &= \det\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix} \\ &= \det\begin{bmatrix} a_{11} & 0 & \cdots & ~ & 0 \\ - & ~ & \br_2\trans & ~ & - \\ ~ & ~ & \vdots & ~ & ~ \\ - & ~ & \br_n\trans & ~ & - \end{bmatrix} + \det\begin{bmatrix} 0 & a_{12} & 0 & \cdots & 0 \\ - & ~ & \br_2\trans & ~ & - \\ ~ & ~ & \vdots & ~ & ~ \\ - & ~ & \br_n\trans & ~ & - \end{bmatrix} + \det\begin{bmatrix} 0 & \cdots & ~ & 0 & a_{1n} \\ - & ~ & \br_2\trans & ~ & - \\ ~ & ~ & \vdots & ~ & ~ \\ - & ~ & \br_n\trans & ~ & - \end{bmatrix} \\ &= a_{11}\det A(1,1) - a_{12}\det A(1,2) + \cdots + (-1)^{1+n}a_{1n}\det A(1,n). \end{aligned} $$ Again, this formula works for any row and column. We may expand the $i$-th row and get $$ \det(A) = \sum_{j=1}^n (-1)^{i + j} a_{ij} \det A(i,j). $$ The formula for expanding a column is similar. This identity is called the **Laplace expansion**. ## Side stories - variable matrix - differentiation ## Experiments ##### Exercise 1 執行以下程式碼。 ```python ### code set_random_seed(0) print_ans = False n = 4 A = matrix(n, random_int_list(n^2,3)) expr = [] dets = [] for j in range(n): expr.append(LatexExpr(r"\det")) B = copy(A) for k in range(n): if k != j: B[0,k] = 0 dets.append(B.det()) expr.append(copy(B)) if j != n-1: expr.append(LatexExpr("+")) print("n =", n) pretty_print(LatexExpr(r"\det"), A, LatexExpr("="), *expr) if print_ans: print("%s = "%A.det() + " + ".join("%s"%d for d in dets)) ``` ##### Exercise 1(a) 對每一個 $j = 1, ..., n$, 計算 $\det A(1,j)$。 **[由林柏仰同學提供]** 以 `seed = 10` 執行程式碼後得到 $$ A = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -3 & -3 & 0 \\ -2 & 0 & -2 & 0 \\ 3 & 2 & -2 & 0 \end{bmatrix}. $$ 依照定義, $A(i,j)$ 為 $A$ 去掉第 $i$ 列、第 $j$ 行後的矩陣。 則 $$ \det A(1,1) = \det \begin{bmatrix} -3 & -3 & 0 \\ 0 & -2 & 0 \\ 2 & -2 & 0 \end{bmatrix} = 0,\\ \det A(1,2) = \det \begin{bmatrix} 0 & -3 & 0 \\ -2 & -2 & 0 \\ 3 & -2 & 0 \end{bmatrix} = 0,\\ \det A(1,3) = \det \begin{bmatrix} 0 & -3 & 0 \\ -2 & 0 & 0 \\ 3 & 2 & 0 \end{bmatrix} = 0,\\ \det A(1,4) = \det \begin{bmatrix} 0 & -3 & -3 \\ -2 & 0 & -3 \\ 3 & 2 & -2 \end{bmatrix} = 51.\\ $$ ##### Exercise 1(b) 計算題目給的等式中的每一個行列式值、 並驗證等式成立。 **[由林柏仰同學提供]** 以 `seed = 10` 執行程式碼後得到等式 $$ \det \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -3 & -3 & 0 \\ -2 & 0 & -2 & 0 \\ 3 & 2 & -2 & 0 \end{bmatrix} = \det \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -3 & -3 & 0 \\ -2 & 0 & -2 & 0 \\ 3 & 2 & -2 & 0 \end{bmatrix} + \det \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -3 & -3 & 0 \\ -2 & 0 & -2 & 0 \\ 3 & 2 & -2 & 0 \end{bmatrix} + \det \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & -3 & -3 & 0 \\ -2 & 0 & -2 & 0 \\ 3 & 2 & -2 & 0 \end{bmatrix} + \det \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -3 & -3 & 0 \\ -2 & 0 & -2 & 0 \\ 3 & 2 & -2 & 0 \end{bmatrix}。 $$ 經過計算後得到 $$ \det \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -3 & -3 & 0 \\ -2 & 0 & -2 & 0 \\ 3 & 2 & -2 & 0 \end{bmatrix} = 0, $$ 以及 $$ \det \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -3 & -3 & 0 \\ -2 & 0 & -2 & 0 \\ 3 & 2 & -2 & 0 \end{bmatrix} = \det \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -3 & -3 & 0 \\ -2 & 0 & -2 & 0 \\ 3 & 2 & -2 & 0 \end{bmatrix} = \det \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & -3 & -3 & 0 \\ -2 & 0 & -2 & 0 \\ 3 & 2 & -2 & 0 \end{bmatrix} = \det \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -3 & -3 & 0 \\ -2 & 0 & -2 & 0 \\ 3 & 2 & -2 & 0 \end{bmatrix} = 0。 $$ 可知題目給出之等式成立。 ## Exercises ##### Exercise 2 以下題目探討矩陣中單一一項對行列式值的影響。 ##### Exercise 2(a) 令 $$ A = \begin{bmatrix} 1 + x & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}. $$ 求 $\det(A)$。 :::warning - [x] 說明行列式值怎麼算的,比如說:用 $3\times 3$ 矩陣的行列式值公式... ::: $Ans:$ 運用 $3\times 3$ 矩陣行列式值公式得到 $$ \det(A)=(-3x). $$ ##### Exercise 2(b) 觀察到 $$ (1+x,2,3) = (1,2,3) + (x,0,0). $$ 利用這個性質, 將 $\det(A)$ 的常數項寫成一個 $3\times 3$ 矩陣的行列式值、 並將其一次項寫成一個 $2\times 2$ 矩陣的行列式值。 $Ans:$ 根據矩陣行列式值分配律,$\det(A)$ 可表示成 $$ \det\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}+ \det\begin{bmatrix} x & 0 & 0 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, $$ 因此 $\det(A)$ 常數項為 $$ \det\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}=0, $$ $\det(A)$ 一次項為 $$ \det\begin{bmatrix} x & 0 & 0 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}= x·\det\begin{bmatrix} 5 & 6 \\ 8 & 9 \end{bmatrix} =(-3x). $$ ##### Exercise 2(c) 把 $\det(A)$ 看成 $x$ 的函數,求 $\frac{d\det(A)}{dx}$。 搭配上一題, 這說明當一個矩陣 $A$ 的 $i,j$-項增加 $x$ 的時候, 其行列式值會增加 $x\cdot (-1)^{i+j}\det A(i,j)$。 **[由林柏仰同學提供]** 由 2(b) 得知, $\det(A) = -3x$ 。 則 $\frac{d\det(A)}{dx} = -3$ 。 由第一題可知,要計算一矩陣 $A$ 的行列式值可透過對其經分配律得到若干個矩陣,並將這些矩陣的行列式值加總得出。 例 $$ \det \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \det \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} + \det \begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix} $$ 由第二題可知,變數也可以拆出來,即 $$ \det \begin{bmatrix} 1 & 2 \\ 3 & 4+x \end{bmatrix} = \det \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} + \det \begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix} + \det \begin{bmatrix} 1 & 2 \\ 0 & x \end{bmatrix} $$ 令 $$ B = \begin{bmatrix} 1 & 2 \\ 0 & x \end{bmatrix} $$ 令 $i = 2,j = 2$ 若對 $B$ 進行列運算(第 $i$ 列往上換 $i-1$ 次)及行運算(第 $j$ 行往左換 $j-1$ 次),會得到一矩陣 $$ \begin{bmatrix} x & 2 \\ 0 & 1 \end{bmatrix} $$ 且此矩陣的行列式值乘以 $(-1)^{(i-1) + (j-1)} = (-1)^{i+j}$ 即為 $B$ 的行列式值。 將此矩陣視為區塊矩陣可得其行列式值為 $$ \det \begin{bmatrix} x \end{bmatrix}\cdot\det \begin{bmatrix} 1 \end{bmatrix} = x\cdot\det A(i,j) $$ 則 $\det(B) = x\cdot(-1)^{i+j}\cdot\det A(i,j)$ 。 故當一矩陣的第 $i,j$-項增加 $x$ 時,其行列式值會增加 $\det(B) = x\cdot(-1)^{i+j}\cdot\det A(i,j)$ 。 ##### Exercise 3 對以下 $n\times n$ 矩陣, 將每列寫成兩個向量相加, 其中一個向量只有常數,另一個向量只有 $x$。 如此可以將 $\det(A)$ 寫成 $2^n$ 個行列式值相加。 計算這些行列式值並計算 $\det(A)$。 ##### Exercise 3(a) $$ A = \begin{bmatrix} 1 - x & 2 \\ 3 & 4 - x \end{bmatrix}. $$ $Ans:$ 根據矩陣行列式值分配律 $$ \det(A) = \det\begin{bmatrix} 1 - x & 2 \\ 3 & 4 - x \end{bmatrix}. $$ 可表示成 $$ \det(A) = \det\begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix} + \det\begin{bmatrix} 1 & 2\\ 0 & -x \end{bmatrix} + \det\begin{bmatrix} -x & 0 \\ 3 & 4 \end{bmatrix} + \det\begin{bmatrix} -x & 0\\ 0 & -x \end{bmatrix} $$ $$ =(-2)+(-x)+(-4x)+(x^2)=x^2-5x-2. $$ ##### Exercise 3(b) $$ A = \begin{bmatrix} 1 - x & 2 & 3 \\ 4 & 5 - x & 6 \\ 7 & 8 & 9 - x \end{bmatrix}. $$ :::warning - [x] 最後句點 ::: $Ans:$ 根據矩陣行列式值分配律 $$ \det(A) = \det\begin{bmatrix} 1 - x & 2 & 3 \\ 4 & 5 - x & 6 \\ 7 & 8 & 9 - x \end{bmatrix}. $$ 可表示成 $$ \det(A)= \det\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}+ \det\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & -x \end{bmatrix} $$ $$ +\det\begin{bmatrix} 1 & 2 & 3 \\ 0 & - x & 0 \\ 7 & 8 & 9 \end{bmatrix}+ \det\begin{bmatrix} -x & 0 & 0 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}+ \det\begin{bmatrix} 1 & 2 & 3 \\ 0 & - x & 0 \\ 0 & 0 & - x \end{bmatrix} $$ $$ +\det\begin{bmatrix} - x & 0 & 0 \\ 4 & 5 & 6 \\ 0 & 0 & - x \end{bmatrix}+ \det\begin{bmatrix} - x & 0 & 0 \\ 0 & - x & 0 \\ 7 & 8 & 9 \end{bmatrix}+ \det\begin{bmatrix} - x & 0 & 0 \\ 0 & - x & 0 \\ 0 & 0 & - x \end{bmatrix} $$ $$ =0+(3x)+(12x)+(3x)+(9x^2)+(x^2)+(5x^2)+(-x^3) \\ =(-x^3)+15x^2+18x. $$ ##### Exercise 4 令 $$ A = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & \ell \\ m & n & o & p \end{bmatrix}. $$ 求 $\det(A)$。 :::warning - [x] 要把 $24$ 項寫出來 - [x] 前面加一些文字:利用拉普拉斯展開,我們 .... 等等 ::: $Ans:$ 利用拉普拉斯展開,可知 $$ \det(A)=\det\begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & \ell \\ m & n & o & p \end{bmatrix} $$ $$ =\det\begin{bmatrix} a & 0 & 0 & 0 \\ 0 & f & g & h \\ 0 & j & k & \ell \\ 0 & n & o & p \end{bmatrix} +(-1)\det\begin{bmatrix} 0 & b & 0 & 0 \\ e & 0 & g & h \\ i & 0 & k & \ell \\ m & 0 & o & p \end{bmatrix} +\det\begin{bmatrix} 0 & 0 & c & 0 \\ e & f & 0 & h \\ i & j & 0 & \ell \\ m & n & 0 & p \end{bmatrix} +(-1)\det\begin{bmatrix} 0 & 0 & 0 & d \\ e & f & g & 0 \\ i & j & k & 0 \\ m & n & o & 0 \end{bmatrix} $$ $$ =a\det\begin{bmatrix} f & g & h \\ j & k & \ell \\ n & o & p \end{bmatrix} +(-b)\det\begin{bmatrix} e & g & h \\ i & k & \ell \\ m & o & p \end{bmatrix} +c\det\begin{bmatrix} e & f & h \\ i & j & \ell \\ m & n & p \end{bmatrix} +(-d)\det\begin{bmatrix} e & f & g \\ i & j & k \\ m & n & o \end{bmatrix} $$ $$ =af\det\begin{bmatrix} k & \ell \\ o & p \\ \end{bmatrix} +a(-g)\det\begin{bmatrix} i & \ell \\ n & p \\ \end{bmatrix} +ah\det\begin{bmatrix} j & k \\ n & o \\ \end{bmatrix} $$ $$ +(-b)e\det\begin{bmatrix} k & \ell \\ o & p \\ \end{bmatrix} +(-b)(-g)\det\begin{bmatrix} i & \ell \\ m & p \\ \end{bmatrix} +(-b)h\det\begin{bmatrix} i & k \\ m & o \\ \end{bmatrix} $$ $$ +ce\det\begin{bmatrix} j & \ell \\ n & p \\ \end{bmatrix} +c(-f)\det\begin{bmatrix} i & \ell \\ m & p \\ \end{bmatrix} +ch\det\begin{bmatrix} i & j \\ m & n \\ \end{bmatrix} $$ $$ +(-d)e\det\begin{bmatrix} j & k \\ n & o \\ \end{bmatrix} +(-d)(-f)\det\begin{bmatrix} i & k \\ m & o \\ \end{bmatrix} +(-d)g\det\begin{bmatrix} i & j \\ m & n \\ \end{bmatrix} $$ $$ =afkp-af\ell o-agip+ag\ell n+ahjo-ahkn-bekp+be\ell o $$ $$ +bgip-bg\ell m-bhio+bhkm+cejp-ce\ell n-cfip+cf\ell m $$ $$ +chin-chjm-dejo+dekn+dfio-dfkm-dgin+dgjm. $$ ##### Exercise 5 給定向量 $\ba$、$\bb$、以及 $\br_2,\ldots,\br_n$。 令 $$ M = \begin{bmatrix} - & \ba\trans + \bb\trans & - \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix} ,\quad A = \begin{bmatrix} - & \ba\trans & - \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix} ,\text{ and}\quad B = \begin{bmatrix} - & \bb\trans & - \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix}. $$ 依照以下步驟證明行列式值的分配律 $\det(M) = \det(A) + \det(B)$。 ##### Exercise 5(a) 證明當 $\{\br_2,\ldots,\br_n\}$ 線性相依的時候,$\det(M) = \det(A) = \det(B) = 0$。 因此等式成立。 :::warning - [x] 向量粗體 - [x] 數學進數學模式 - [x] 中英數之間空格 ::: $Ans:$ 因為線性相依因為線性相依,所以 $$ 0 = a_2\br_1 + \cdots + a_n\br_n. $$ 可以透過 $n-1$ 個基本矩陣使 $\ M,A,B$ 最後一列為零向量 故 $\det(M) = \det(A) = \det(B) = 0$。 ##### Exercise 5(b) 假設 $\{\br_2,\ldots,\br_n\}$ 線性獨立。 找一個向量 $\br_1$ 使得 $\beta = \{\br_1,\br_2,\ldots,\br_n\}$ 是 $\mathbb{R}^n$ 的一組基底。 因此可以將 $\ba$ 和 $\bb$ 寫成 $\beta$ 的線性組合: $$ \begin{aligned} \ba &= a_1\br_1 + \cdots + a_n\br_n \\ \bb &= b_1\br_1 + \cdots + b_n\br_n \end{aligned} $$ 藉由列運算說明行列式值的分配律成立。 **[由林柏仰同學提供]** 對 $M$ 進行列運算可得矩陣 $$ \begin{bmatrix} - & (a_1 + b_1)\br_1\trans & - \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix}。 $$ 因一矩陣的行列式值可看成其列向量在空間中所張出的超平行體的體積,故 $\det(M) = (a_1 + b_1)\cdot\det(R)$,其中 $$ R = \begin{bmatrix} - & \br_1\trans & - \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix}。 $$ 對 $A,B$ 進行列運算可得到矩陣 $$ \begin{bmatrix} - & a_1\br_1\trans & - \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix}, \begin{bmatrix} - & b_1\br_1\trans & - \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix}。 $$ 因一矩陣的行列式值可看成其列向量在空間中所張出的超平行體的體積,故 $\det(A) = a_1\cdot\det(R), \det(B) = b_1\cdot\det(R)$ 。 而 $\det(A) + \det(B) = (a_1 + b_1)\cdot\det(R) = \det(M)$ 。 :::info 目前分數 = 6.5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully