weichen11011
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 人工智慧期末作業 ### 第一題 排課系統 有使用到老師的排課分數計算 ```python= # -*- coding: utf-8 -*- """ Created on Sun Apr 7 17:48:03 2024 @author: yan10 """ import numpy as np from random import random, randint, choice courses = [ {'teacher': ' ', 'name':'  ', 'hours': -1}, ## 那一節沒上課 {'teacher': '甲', 'name':'機率', 'hours': 2}, {'teacher': '甲', 'name':'線代', 'hours': 3}, {'teacher': '甲', 'name':'離散', 'hours': 3}, {'teacher': '乙', 'name':'視窗', 'hours': 3}, {'teacher': '乙', 'name':'科學', 'hours': 3}, {'teacher': '乙', 'name':'系統', 'hours': 3}, {'teacher': '乙', 'name':'計概', 'hours': 3}, {'teacher': '丙', 'name':'軟工', 'hours': 3}, {'teacher': '丙', 'name':'行動', 'hours': 3}, {'teacher': '丙', 'name':'網路', 'hours': 3}, {'teacher': '丁', 'name':'媒體', 'hours': 3}, {'teacher': '丁', 'name':'工數', 'hours': 3}, {'teacher': '丁', 'name':'動畫', 'hours': 3}, {'teacher': '丁', 'name':'電子', 'hours': 4}, {'teacher': '丁', 'name':'嵌入', 'hours': 3}, {'teacher': '戊', 'name':'網站', 'hours': 3}, {'teacher': '戊', 'name':'網頁', 'hours': 3}, {'teacher': '戊', 'name':'演算', 'hours': 3}, {'teacher': '戊', 'name':'結構', 'hours': 3}, {'teacher': '戊', 'name':'智慧', 'hours': 3} ] teachers = ['甲', '乙', '丙', '丁', '戊'] rooms = ['A', 'B'] slots = [ 'A11', 'A12', 'A13', 'A14', 'A15', 'A16', 'A17', 'A21', 'A22', 'A23', 'A24', 'A25', 'A26', 'A27', 'A31', 'A32', 'A33', 'A34', 'A35', 'A36', 'A37', 'A41', 'A42', 'A43', 'A44', 'A45', 'A46', 'A47', 'A51', 'A52', 'A53', 'A54', 'A55', 'A56', 'A57', 'B11', 'B12', 'B13', 'B14', 'B15', 'B16', 'B17', 'B21', 'B22', 'B23', 'B24', 'B25', 'B26', 'B27', 'B31', 'B32', 'B33', 'B34', 'B35', 'B36', 'B37', 'B41', 'B42', 'B43', 'B44', 'B45', 'B46', 'B47', 'B51', 'B52', 'B53', 'B54', 'B55', 'B56', 'B57', ] def hillClimbing(x, height, neighbor, max_fail=10000): fail = 0 while True: nx = neighbor(x) if height(nx)>height(x): x = nx fail = 0 else: fail += 1 if fail > max_fail: return x class SolutionScheduling: def neighbor(self,x): change = self.v choose=randint(0,1) choose1 = randint(0, len(slots)-1) choose2 = randint(0, len(slots)-1) temp = change[choose1] change[choose1] = change[choose2] change[choose2] = temp if choose == 0 : i=randint(0, len(slots)-1) change[i]=randint(0, len(courses)-1) else : i=randint(0, len(slots)-1) j=randint(0, len(slots)-1) tmp=change[i] change[i]=change[j] change[j]=tmp return change def height(self,fills): courseCounts = [0] * len(courses) score = 0 for si in range(len(slots)): courseCounts[fills[si]] += 1 # 連續上課:好 隔天:不好 跨越中午:不好 if si < len(slots)-1 and fills[si] == fills[si+1] and si%7 != 6 and si%7 != 3: score += 0.1 if si % 7 == 0 and fills[si] != 0: # 早上 8:00: 不好 score -= 0.12 for ci in range(len(courses)): if (courses[ci]['hours'] >= 0): score -= abs(courseCounts[ci] - courses[ci]['hours']) # 課程總時數不對: 不好 return score def str(self): outs = [] fills = self.v for i in range(len(slots)): c = courses[fills[i]] if i%7 == 0: outs.append('\n') outs.append(slots[i] + ':' + c['name']) return 'height={:f} {:s}\n\n'.format(self.height(self.v), ' '.join(outs)) def __init__(self): self.v = [ randint(0, len(courses)-1) for i in range(len(slots))] print("Initial schedule:", self.v) print("Initial height:", self.height(self.v)) print("Initial solution:", self.str()) final_solution = hillClimbing(self.v, self.height, self.neighbor) print("Final solution:", final_solution) print("Final height:", self.height(final_solution)) print("Final solution:", self.str()) SolutionScheduling() ``` ## 第二題 旅行員推銷問題 ```python= # -*- coding: utf-8 -*- """ Created on Mon Mar 18 14:48:16 2024 @author: yan10 """ import random citys = [ (0,3),(0,0), (0,2),(0,1), (1,0),(1,3), (2,0),(2,3), (3,0),(3,3), (3,1),(3,2) ] def distance(p1, p2): ## print('p1=', p1) x1, y1 = p1 x2, y2 = p2 return ((x2-x1)**2+(y2-y1)**2)**0.5 def pathLength(p): dist = 0 plen = len(p) for i in range(plen): dist += distance(citys[p[i]], citys[p[(i+1)%plen]]) # dist += distance(citys[i], citys[p[i]]) return dist #path = [i for i in range(len(citys))] l = len(citys) path = [(i+1)%l for i in range(l)] print(path) print('pathLength=', pathLength(path)) def neighbor(p): p2 = p.copy() ran = len(p2) city1 = random.randint(0, ran-1) city2 = random.randint(0, ran-1) temp = p2[city1] p2[city1] = p2[city2] p2[city2] = temp ##print(p2) return p2 def hillClimbing(x,pathLength, neighbor,max_fail=10000): fail = 0 while True: nx = neighbor(x) if pathLength(nx) < pathLength(x) and pathLength(nx) != 0: x = nx fail = 0 else: fail += 1 if fail > max_fail: return x result = pathLength(hillClimbing(path,pathLength,neighbor)) print('path=',hillClimbing(path,pathLength,neighbor)) print('pathLength=', result) ``` ## 第三題線性規劃 使用python函式庫的pulp ```python= import pulp import pandas myprolp = pulp.LpProblem('ans', sense=pulp.LpMaximize) x =pulp.LpVariable('x') y =pulp.LpVariable('y') z =pulp.LpVariable('z') myprolp += 3*x +2*y + 5*z # 條件式 myprolp += (x+y <=10) myprolp += (2*x+z <=9) myprolp += (y+2*z<=11) myprolp += (x>=0) myprolp += (y>=0) myprolp += (z>=0) myprolp.solve() #print("Status:", myprolp.status) for i in myprolp.variables(): print(i.name, "=", i.varValue) ``` ## 第五題 為 micrograd 加上一個梯度下降法函數 gradientDescendent ```python= ## gd.py import math import numpy as np from numpy.linalg import norm # 函數 f 對變數 k 的偏微分: df / dk def df(f, p, k, h=0.01): p1 = p.copy() p1[k] = p[k]+h return (f(p1) - f(p)) / h # 函數 f 在點 p 上的梯度 def grad(f, p, h=0.01): gp = p.copy() for k in range(len(p)): gp[k] = df(f, p, k, h) return gp # 使用梯度下降法尋找函數最低點 def gradientDescendent(f, p0, h=0.01, max_loops=100000, dump_period=1000): p = p0.copy() print(p) for i in range(max_loops): fp = f(p) fp.backward() #gp = grad(f, p) # 計算梯度 gp gp = [] for value in p: gp.append(value.grad) glen = norm(gp) # norm = 梯度的長度 (步伐大小) if i%dump_period == 0: print("gp=", gp) if glen < 0.00001: # 如果步伐已經很小了,那麼就停止吧! break gh = np.multiply(gp, -1*h) # gh = 逆梯度方向的一小步 p += gh # 向 gh 方向走一小步 answer=[] for k in p: answer.append(k.data) print(answer) return p # 傳回最低點! ``` ```python= ## gdArray.py import gd as gd; from micrograd.engine import Value def f(p): [x, y,z] = p return (x-1)**2+(y-2)**2+(z-3)**2 #return (x-2)**2+3*(y-0.5)**2+(z-3)**2 # return x*x + 3*y*y + z*z - 4*x - 3*y - 5*z + 8 p = [Value(2.0), Value(1.0),Value(3.0)] print(p) print(gd.gradientDescendent(f, p)) ``` ## 第六題 請為 macrograd 加上一個 crossEntropyLoss 層,然後用 mnist 測試 ```python= # 來源 -- https://github.com/newcodevelop/micrograd/blob/master/micrograd/engine.py # 有參考老師 https://github.com/ccc112b/py2gpt/blob/master/03b-MacroGrad/macrograd/engine.py # 推薦網頁https://r23456999.medium.com/%E4%BD%95%E8%AC%82-cross-entropy-%E4%BA%A4%E5%8F%89%E7%86%B5-b6d4cef9189d import numpy as np class Tensor: def __init__(self, data, _children=(), _op=''): self.data = np.array(data) self.grad = np.zeros(self.data.shape) # internal variables used for autograd graph construction self._backward = lambda: None self._prev = set(_children) self._op = _op # the op that produced this node, for graphviz / debugging / etc @property def shape(self): return self.data.shape def __add__(self, other): # assert self.shape == other.shape other = other if isinstance(other, Tensor) else Tensor(np.zeros(self.shape)+other) # 讓維度一致 out = Tensor(self.data + other.data, (self, other), '+') def _backward(): # print('self.grad = ', self.grad) # print('other.grad = ', other.grad) # print('out.grad = ', out.grad, 'op=', out._op) self.grad += out.grad other.grad += out.grad out._backward = _backward return out def __mul__(self, other): other = other if isinstance(other, Tensor) else Tensor(np.zeros(self.shape)+other) # 讓維度一致 # other = other if isinstance(other, Tensor) else Tensor(other) out = Tensor(self.data * other.data, (self, other), '*') def _backward(): print('self.shape=', self.shape) print('other.shape=', other.shape) print('out.shape=', out.shape) self.grad += other.data * out.grad other.grad += self.data * out.grad out._backward = _backward return out def __pow__(self, other): assert isinstance(other, (int, float)), "only supporting int/float powers for now" out = Tensor(self.data**other, (self,), f'**{other}') def _backward(): self.grad += (other * self.data**(other-1)) * out.grad out._backward = _backward return out def relu(self): out = Tensor(np.maximum(0, self.data), (self,), 'relu') # Tensor(0 if self.data < 0 else self.data, (self,), 'ReLU') def _backward(): self.grad += (out.data > 0) * out.grad out._backward = _backward return out def matmul(self,other): other = other if isinstance(other, Tensor) else Tensor(other) out = Tensor(np.matmul(self.data , other.data), (self, other), 'matmul') def _backward(): self.grad += np.dot(out.grad,other.data.T) other.grad += np.dot(self.data.T,out.grad) out._backward = _backward return out def softmax(self): out = Tensor(np.exp(self.data) / np.sum(np.exp(self.data), axis=1)[:, None], (self,), 'softmax') softmax = out.data def _backward(): s = np.sum(out.grad * softmax, 1) t = np.reshape(s, [-1, 1]) # reshape 為 n*1 self.grad += (out.grad - t) * softmax out._backward = _backward return out def log(self): out = Tensor(np.log(self.data),(self,),'log') def _backward(): self.grad += out.grad/self.data out._backward = _backward return out def sum(self,axis = None): out = Tensor(np.sum(self.data,axis = axis), (self,), 'SUM') def _backward(): output_shape = np.array(self.data.shape) output_shape[axis] = 1 tile_scaling = self.data.shape // output_shape grad = np.reshape(out.grad, output_shape) self.grad += np.tile(grad, tile_scaling) out._backward = _backward return out def cross_entropy(self, yb): log = self.log() zb = yb*log out = zb.sum(axis=1) ans = -out.sum() return ans def backward(self): # topological order all of the children in the graph topo = [] visited = set() def build_topo(v): if v not in visited: visited.add(v) for child in v._prev: build_topo(child) topo.append(v) build_topo(self) # go one variable at a time and apply the chain rule to get its gradient self.grad = 1 for v in reversed(topo): #print(v) v._backward() def __neg__(self): # -self return self * -1 def __radd__(self, other): # other + self return self + other def __sub__(self, other): # self - other return self + (-other) def __rsub__(self, other): # other - self return other + (-self) def __rmul__(self, other): # other * self return self * other def __truediv__(self, other): # self / other return self * other**-1 def __rtruediv__(self, other): # other / self return other * self**-1 def __repr__(self): return f"Tensor(data={self.data}, grad={self.grad})" ``` ## 第七題 請自己定義一個神經網路模型,並在 MNIST 資料集上訓練並跑出正確率 準確率到達98% [第七題](https://github.com/weichen11011/ai/blob/master/hw7/lentrelu.py) ## 第八題 請自己設計一個固定的策略(不需要學習)解決 CartPole 問題,讓你的竿子盡量撐得久不會倒下來 ```python= # -*- coding: utf-8 -*- """ Created on Sun May 5 06:13:01 2024 @author: yan10 """ import gymnasium as gym env = gym.make("CartPole-v1", render_mode="human") # 若改用這個,會畫圖 # env = gym.make("CartPole-v1", render_mode="rgb_array") observation, info = env.reset(seed=42) score = 0 def action(observation): if observation[3]>0: action = 1 else: action = 0 return action for _ in range(1000): env.render() observation, reward, terminated, truncated, info = env.step(action(observation)) #print('observation=', observation) score += reward if terminated or truncated: observation, info = env.reset() print('done, score=', score) score = 0 env.close() ``` ## 第九題 請呼叫 LLM 大語言模型 api (groq, openai) 去做一個小應用 >透過在問題前面輸入語言(ch,en)便可選擇輸出的回答語言 >EX: python groqChat.py en 問題 ```python= import os import sys from groq import Groq language = sys.argv[1].lower() if (language == 'ch'): question = " ".join(sys.argv[2:]) + "請用中文回答" elif (language == 'en'): question = " ".join(sys.argv[2:]) + "請用英文回答" print(f"選擇的語言:{language}") print("問題:", question) client = Groq( api_key="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", ) chat_completion = client.chat.completions.create( messages=[ { "role": "user", "content": question, } ], model="llama3-8b-8192", ) print(chat_completion.choices[0].message.content) ``` ## 第十題 請自己設計 RAG 或 ReAct 的程式 (可以用 langchain 或 dspy) >參考網站 [Langchain](https://python.langchain.com/v0.1/docs/get_started/introduction) ```python= import os from langchain import hub from langchain.agents import AgentExecutor, create_react_agent from langchain_community.tools.tavily_search import TavilySearchResults from langchain_groq import ChatGroq # set up API key os.environ["TAVILY_API_KEY"] = "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" tools = [TavilySearchResults(max_results=1)] # Get the prompt to use - you can modify this! prompt = hub.pull("hwchase17/react") # Choose the LLM to use llm = ChatGroq(api_key="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") # Construct the ReAct agent agent = create_react_agent(llm, tools, prompt) # Create an agent executor by passing in the agent and tools agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) question = input ("請輸入問題: ") agent_executor.invoke({"input": "question"}) ``` ##

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully