Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 投影與鏡射 Projection and reflection ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$ ```python from lingeo import random_int_list ``` ## Main idea ##### Matrix-matrix multiplication (by entry) Let $$ A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & ~ & \vdots \\ a_{m1} & \cdots & a_{mn} \\ \end{bmatrix} \text{ and } B = \begin{bmatrix} b_{11} & \cdots & b_{1\ell} \\ \vdots & ~ & \vdots \\ b_{n1} & \cdots & b_{n\ell} \\ \end{bmatrix}$$ be $m\times n$ and $n\times \ell$ matrices, respectively. Then the $ij$-entry of $AB$ is $$(AB)_{ij} = \sum_{k = 1}^n a_{ik}b_{kj}.$$ Let $A$ be an $m\times n$ matrix. The **transpose** of $A$ is the $n\times m$ matrix $A\trans$ whose $ij$-entry is the $ji$-entry of $A$. The $n\times n$ **identity matrix** is the matrix whose diagonal entries are one and other entries are zero, usually denoted as $I_n$. The $m\times n$ **zero matrix** is the matrix whose entries are zero, usually denoted as $O_{m,n}$. If $A$ is an $n\times n$ matrix and there is a matrix $B$ such that $AB = BA = I_n$, then $B$ is called the **inverse** of $A$, denoted as $A^{-1} = B$. A matrix with an inverse is **invertible**. Suppose $A$ is an $n\times k$ matrix with $\ker(A) = \{\bzero\}$. Then every vector $\bb\in\mathbb{R}^n$ can be written as $$\bb = \bw + \bh$$ where $\bw\in\Col(A)$ and $\bh\in\Col(A)^\perp$. Moreover, $$\begin{aligned} \bw &= A(A\trans A)^{-1}A\trans \bb, \\ \bh &= \bb - \bw. \end{aligned}$$ We say $\bw$ is the **projection** of $\bb$ onto the subspace $\Col(A)$, and $\bw - \bh$ the **reflection** of $\bb$ along the subspace $\Col(A)$. Both action can be done by matrices. That is, $$\begin{aligned} \bw &= A(A\trans A)^{-1}A\trans \bb, \\ \bw - \bh &= 2\bw - \bb = (2A(A\trans A)^{-1}A\trans - I_n)\bb. \end{aligned} $$ ## Side stories - $\inp{\bx}{\by} = \by\trans\bx$ - matrix algbra ## Experiments ##### Exercise 1 執行下方程式碼。 依照步驟求出 $\bb$ 在 $\Col(A)$ 上的投影。 <!-- eng start --> Run the code below. Use the given instructions to find the projection of $\bb$ onto $\Col(A)$. <!-- eng end --> ```python ### code set_random_seed(0) print_ans = False while True: A = matrix(2, random_int_list(8)).transpose() if (A.transpose() * A).is_invertible(): break b = vector(random_int_list(4)) print("A =") print(A) print("b =", b) if print_ans: AT = A.transpose() ATA = AT * A w = A * ATA.inverse() * AT * b print("The projection is %s."%w) ``` ##### Exercise 1(a) 假設 $\bb = \bw + \bh$ 使得 $\bw\in\Col(A)$(也就是有某一個 $\bv$ 使得 $\bw = A\bv$)、 $\bh\in\Col(A)^\perp = \Row(A\trans)^\perp = \ker(A\trans)$(也就是 $A\trans\bh = \bzero$)。 將 $\bb = \bw + \bh$ 兩邊前乘 $A\trans$﹐ 並用 $A$、$\bb$、和 $\bv$ 表示出來。 <!-- eng start --> Assume $\bb = \bw + \bh$ such that $\bw\in\Col(A)$ (meaning $\bw = A\bv$ for some $\bv$) and $\bh\in\Col(A)^\perp = \Row(A\trans)^\perp = \ker(A\trans)$ (meaning $A\trans\bh = \bzero$). Multiply the both sides of $\bb = \bw + \bh$ by $A\trans$. Then rewrite the equation by $A$, $\bb$, and $\bv$. <!-- eng end --> --- :::warning - [x] Multiplying the both sides (ing) - [x] It seems not necessary to multiply the both sides by $A$. - [x] The problem statement is not so clear (my bad). What I am thinking is $A\trans \bb = A\trans A\bv$. ::: --- ##### Exercise 1(a) - answer here Multiplying the both sides of $\bb = \bw + \bh$ by $A\trans$, we get $A\trans\bb = A\trans\bw + A\trans\bh$. Because $A\trans\bh = \bzero$ and $\bw=A\bv$, we obtain that $A\trans\bb = A\trans A\bv$. --- ##### Exercise 1(b) 將 $A$ 和 $\bb$ 的數字代入並解方程式求出 $\bv$。 (如果 $A\trans A$ 可逆﹐ 則可以把上一題的式子寫成 $\bv = (A\trans A)^{-1} A\trans \bb$。) <!-- eng start --> Plug in the numbers for $A$ and $\bb$ to find $\bv$. (Note that if $A\trans A$ is invertible, then the equation from the previous problem can be written as $\bv = (A\trans A)^{-1} A\trans \bb$.) <!-- eng end --> --- :::warning - [x] Then calculating --> By calculating ..., ~~threfore~~ we have $\bv = ...$. ::: ##### Exercise 1(b) - answer here If $A\trans A$ is invertible, we can transform the equation $A\trans\bb = A\trans A\bv$ into $\bv=(A\trans A)^{-1}A\trans \bb$. By running the code above, we obtain that $$A = \begin{bmatrix} 0 & 0 \\ -1 & 0 \\ 0 & 0 \\ -3 & -1 \end{bmatrix} $$ and $$ \bb =\begin{bmatrix} -1 \\ -2 \\ -3 \\ 2 \end{bmatrix} . $$ So we can get that $A\trans=\begin{bmatrix} 0 & -1 & 0 & -3\\ 0 & 0 & 0 & -1 \end{bmatrix}$. By calculating …, $(A\trans A)^{-1}=\begin{bmatrix} 1 & -3\\ -3 & 10 \end{bmatrix}$, we have $\bv=(A\trans A)^{-1}A\trans \bb=\begin{bmatrix} 1 & -3\\ -3 & 10 \end{bmatrix}\begin{bmatrix} 0 & -1 & 0 & -3\\ 0 & 0 & 0 & -1 \end{bmatrix}\begin{bmatrix} -1 \\ -2 \\ -3 \\ 2 \end{bmatrix}$ $\ \ =\begin{bmatrix} 0 & -1 & 0 & 0\\ 0 & 3 & 0 & 1 \end{bmatrix}\begin{bmatrix} -1 \\ -2 \\ -3 \\ 2 \end{bmatrix}=\begin{bmatrix} 2 \\ -8 \end{bmatrix}$. --- ##### Exercise 1(c) 因此我們知道 $$ \begin{aligned} \bw &= A\bv, \\ \bh &= \bb - \bw. \end{aligned} $$ 以題目給的 $A$ 和 $\bb$ 將 $\bw$ 和 $\bh$ 求出來﹐ 並確認 $A\trans\bh = \bzero$。 <!-- eng start --> Therefore, we know $$ \begin{aligned} \bw &= A\bv, \\ \bh &= \bb - \bw. \end{aligned} $$ Use the $A$ and $\bb$ given in the problem to find $\bw$ and $\bh$. Then verify $A\trans\bh = \bzero$. <!-- eng end --> --- :::warning - [x] Add periods after math expressions if necessary. - [x] Through calculating --> By calculation: - [x] We gain --> We get ::: ##### Exercise 1(c) -- answer here Accroding to exercise 1(a) 1(b), we understand that $$A = \begin{bmatrix} 0 & 0 \\ -1 & 0 \\ 0 & 0 \\ -3 & -1 \end{bmatrix} $$ and $$ \bv =\begin{bmatrix} 2 \\ -8 \end{bmatrix}. $$ By calculation: $$ \begin{aligned} \bw &= A\bv =\begin{bmatrix} 0 & 0\\ -1 & 0\\ 0 & 0\\ -3 &-1 \end{bmatrix}\begin{bmatrix} 2\\ -8 \end{bmatrix}\ =\begin{bmatrix} 0 \\ -2 \\ 0 \\ 2 \end{bmatrix}\ \end{aligned}. $$ Also based on the calculation results of the previous questions, we have the matrix as $$ \bb = \begin{bmatrix} -1 \\ -2 \\ -3 \\ 2 \end{bmatrix} $$ and $$ \bw = \begin{bmatrix} 0 \\ -2 \\ 0 \\ 2 \end{bmatrix}. $$ After calculation, we get the answer of matrix $\bh$ $$ \begin{aligned} \bh &= \bb - \bw=\begin{bmatrix} -1 \\ -2 \\ -3 \\ 2 \end{bmatrix}-\begin{bmatrix} 0 \\ -2 \\ 0 \\ 2 \end{bmatrix}\ =\begin{bmatrix} -1 \\ 0 \\ -3\\ 0 \end{bmatrix}\ \end{aligned}. $$ By using the calculation results of the previous questions $A\trans\bh=\begin{bmatrix} 0 & -1 & 0 & 3\\ 0 & 0 & 0 & -1 \end{bmatrix} \ \begin{bmatrix} -1 \\ 0 \\ -3\\ 0 \end{bmatrix}\ = \begin{bmatrix} 0 \\ 0 \end{bmatrix}\ = \bzero$. Now, we can verify that $A\trans\bh = \bzero$. --- ## Exercises ##### Exercise 2 以下小題說明為何 $A\trans A$ 可逆。 <!-- eng start --> The following problems explain why $A\trans A$ is invertible. <!-- eng end --> ##### Exercise 2(a) 若 $\bx$ 和 $\by$ 為 $\mathbb{R}^n$ 中的兩向量。 驗證 $\inp{\bx}{\by} = \by\trans\bx$。 (這裡的右式把 $\bx$ 和 $\by$ 都當成 $n\times 1$ 的矩陣 而算出來的 $1\times 1$ 的矩陣 $\by\trans\bx$ 被當成一個數字。) <!-- eng start --> Let $\bx$ and $\by$ be vectors in $\mathbb{R}^n$. Verify $\inp{\bx}{\by} = \by\trans\bx$. (Here on the right hand side of the equation, we view $\bx$ and $\by$ as $n\times 1$ matrices, while the output $\by\trans\bx$ is an $1\times 1$ matrix and is viewed as a number.) <!-- eng end --> --- ##### Exercise 2(a) -- answer here Supose $\bx$ and $\by$ are both $n\times 1$ matrices, then ${\by\trans}$ is an $\times 1$ matrix. Because $\langle \bx,\by \rangle$ is the inner product of vector $\bx$ and $\by$, we know that $\langle \bx,\by \rangle= x_1y_1+x_2y_2+...+x_ny_n$. Then we calculate $\by\trans\bx:$ $$\by\trans\bx=\begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \\ :\\ x_n \end{bmatrix} = x_1y_1+x_2y_2+...+x_ny_n. $$ Hence, we prove that $\inp{\bx}{\by} = \by\trans\bx$. :::success Nice :thumbsup: ::: --- ##### Exercise 2(b) 若 $A$ 和 $B$ 分別為 $m\times n$ 和 $n\times \ell$ 的兩矩陣。 驗證 $(AB)\trans = B\trans A\trans$。 <!-- eng start --> Let $A$ and $B$ be $m\times n$ and $n\times m$ matrices, respectively. Verify $(AB)\trans = B\trans A\trans$. <!-- eng end --> --- :::warning - [x] $\trans$ but not $^{\trans}$ - [x] At the beginning, add: We may assume $A = \begin{bmatrix} a_{ik} \end{bmatrix}$ and $B = \begin{bmatrix} b_{kj} \end{bmatrix}$. - [x] $(AB)\trans = \begin{bmatrix}\sum_{k=1}^na_{ik}b_{kj}\end{bmatrix}^{\trans}_{m\times \ell} = \begin{bmatrix}\sum_{k=1}^na_{ki}b_{jk}\end{bmatrix}_{\ell\times m}$ - [x] $B\trans A\trans=[\;b_{kj}\;]_{\ell\times n}[\;a_{ki}\;]_{n\times m}=\begin{bmatrix}\sum_{k=1}^na_{ki}b_{jk}\end{bmatrix}_{\ell\times m}$. ::: ##### Exercise 2(b) -- answer here We may assume $A$ = $[\;a_{ik}\;]$ and $B$ = $[\;b_{kj}\;]$. Because $A$ is an $m\times n$ matrix and $B$ is an $n\times \ell$ matrix, $(AB)_{ij} = \sum_{k = 1}^n a_{ik}b_{kj}.$ And $A\trans=[\;a_{ik}\;]\trans_{m\times n}=[\;a_{ki}\;]_{n\times m}$, $B\trans=[\;b_{kj}\;]\trans_{n\times \ell}=[\;b_{jk}\;]_{\ell\times n}$. So, we have $(AB)\trans=\begin{bmatrix}\sum_{k=1}^na_{ik}b_{kj}\end{bmatrix}^{\trans}_{m\times \ell} = \begin{bmatrix}\sum_{k=1}^na_{ki}b_{jk}\end{bmatrix}_{\ell\times m}$ and $B\trans A\trans=[\;b_{kj}\;]_{\ell\times n}[\;a_{ki}\;]_{n\times m}=\begin{bmatrix}\sum_{k=1}^na_{ki}b_{jk}\end{bmatrix}_{\ell\times m}$. Therefore, we prove that $(AB)\trans = B\trans A\trans$. --- ##### Exercise 2(c) 驗證 $\inp{A\bx}{\by} = \by\trans A\bx = \inp{\bx}{A\trans\by}$。 <!-- eng start --> Verify $\inp{A\bx}{\by} = \by\trans A\bx = \inp{\bx}{A\trans\by}$. <!-- eng end --> --- ##### Exercise 2(c) -- answer here By exercise 2(a), we know $\inp{A\bx}{\by} =\by\trans A\bx.$ And by exercise 2(b), we also know that $\by\trans A=(A\trans\by)\trans$. Hence, $\inp{A\bx}{\by} =\by\trans A\bx=(A\trans\by)\trans\bx=\inp{\bx}{A\trans\by}.$ :::success Good! ::: --- ##### Exercise 2(d) 證明 $\ker(A) = \ker(A\trans A)$。 因為 $A\trans A$ 是一個方陣, 後面會證明一個方陣 $M$ 可逆的等價條件就是 $\ker(M) = \{\bzero\}$。 因此 $\ker(A) = \{\bzero\}$ 足以保證 $A\trans A$ 可逆。 另一方面, 如果 $\ker(A) \neq \{\bzero\}$, 表示 $A$ 中的行向量有一些可以去掉並不會影響到行空間。 重覆這個步驟直到沒有任何多餘的行向量時 (這時行空間都還是同一個) 就保證有 $\ker(A) = \{\bzero\}$。 (參考【矩陣的行向量】中的練習。) <!-- eng start --> Prove $\ker(A) = \ker(A\trans A)$. We will learn that a square matrix $M$ with $\ker(M) = \{\bzero\}$ is always invertible. Since $A\trans A$ is a square matrix, $\ker(A) = \{\bzero\}$ implies $A\trans A$ is invertible. On the other hand, if $\ker(A) \neq \{\bzero\}$, then there are some redundant columns in $A$, whose removal does not change the column space. Keep removing these volumns while preserving the column space until there is no more redundant column. Therefore, we may always assume $\ker(A) = \{\bzero\}$. (See 103-4.) <!-- eng end --> --- ##### Exercise 2(d) -- answer here :::warning - [x] $O$ --> $\bzero$ I think your argument only shows $\ker(A) \subset \ker(A\trans A)$. For such questions, you are recommended to use the following template. **Claim**: $\ker(A) \subset \ker(A\trans A)$. Suppose $\bv\in\ker(A)$. Then $A\bv = \bzero$. ... Thus, we have $\bv\in\ker(A\trans A)$. **Claim**: $\ker(A) \supset \ker(A\trans A)$. Suppose $\bv\in\ker(A\trans A)$. Then $A\trans A\bv = \bzero$. ... (this one is harder) Thus, we have $\bv\in\ker(A)$. By the previous two claims, we know the two sets are the same. ::: **Claim**: $\ker(A) \subseteq \ker(A\trans A)$. Suppose $\bv\in\ker(A)$. Then $A\bv = \bzero$. Multiplying the both sides of $A\bv=\bzero$ by $A\trans$, we get that $A\trans A\bv=A\trans \bzero=\bzero.$ Thus, we have $\bv\in\ker(A\trans A)$. **Claim**: $\ker(A\trans A) \subseteq \ker(A)$. Suppose $\bv\in\ker(A\trans A)$. Then $A\trans A\bv = \bzero$. Multiplying the both sides of $A\trans A\bv=\bzero$ by $\bv\trans$, we get that $\bv\trans A\trans A\bv=(A\bv)\trans A\bv= \inp{A\bv}{A\bv}=\|{A\bf v}\|^2 =0.$ So we prove that $A\bv=\bzero.$ Thus, we have $\bv\in\ker(A)$. By the previous two claims, we know the two sets are the same, and $\ker(A) = \ker(A\trans A)$ is proven. --- ##### Exercise 3(a) 想像矩陣乘法就是一個動作(像是投影、或是鏡射) 若 $A$ 是一個投影矩陣、 $\bb$ 是一個向量。 猜看看 $A^2\bb$ 會是什麼? 猜看看 $A^2$ 會是什麼? (下方程式碼中的矩陣是一個投影矩陣。 可以試試看。) <!-- eng start --> Imagine that multiplying a matrix is like applying an action, e.g., projection or reflection, to a vector. Let $A$ is a projection matrix and $\bb$ a vector. Guess what is $A^2\bb$ and what is $A^2$? Provide your reasons. (You may run some examples by the code below.) <!-- eng end --> ```python ### code set_random_seed(0) a = vector(random_int_list(3)) A = a.outer_product(a) / a.norm()**2 b = vector(random_int_list(3)) print("A =") show(A) print("b =", b) ``` :::warning - [x] let $A$ be - [x] When typing $A^2\bb$, put $\bb$ as a column vector. - [x] the square will return to the original --> its square is itself - [x] python --> Python - [x] below --> below. ::: ##### Exercise 3(a) -- answer here According to the questions, let $A$ be a projection matrix and $\bb$ a vector. By running the code above, we get the matrix $A$ and vector $\bb$ $$A = \begin{bmatrix} \frac{8}{25} & \frac{-6}{25} & \frac{-2}{5} \\ \frac{-6}{25} & \frac{9}{50} & \frac{3}{10} \\ \frac{-2}{5} & \frac{3}{10} & \frac{1}{2} \end{bmatrix} $$ and $$ \bb = ( {-5},{-5},{0}). $$ Vector $\bb$ can be written as a column vector like: $$ \bb = \begin{bmatrix} -5\\ -5\\ 0 \end{bmatrix} $$ After calculating through the program, we can find that $$ A^2\bb = \begin{bmatrix} \frac{8}{25} & \frac{-6}{25} & \frac{-2}{5} \\ \frac{-6}{25} & \frac{9}{50} & \frac{3}{10} \\ \frac{-2}{5} & \frac{3}{10} & \frac{1}{2} \end{bmatrix}\ \begin{bmatrix} -5\\ -5\\ 0 \end{bmatrix}= \begin{bmatrix} −25\\ 310\\ 12 \end{bmatrix} $$ $$ A^2 = \begin{bmatrix} \frac{8}{25} & \frac{-6}{25} & \frac{-2}{5} \\ \frac{-6}{25} & \frac{9}{50} & \frac{3}{10} \\ \frac{-2}{5} & \frac{3}{10} & \frac{1}{2} \end{bmatrix}. $$ After the above discussion, it can be concluded that for the projection matrix $A$, its square is itself. $$ A^2 = A $$ Attach the Python code for this question below. ```python ### code set_random_seed(0) a = vector(random_int_list(3)) A = a.outer_product(a) / a.norm()**2 b = vector(random_int_list(3)) print("A =") show(A) print("b =", b) print() # Blank Line print() # Blank Line print("A^2 = ") show(A**2) print() # Blank Line print() # Blank Line print("A^2 * b =") show(A**2*b) ``` --- ##### Exercise 3(b) 想像矩陣乘法就是一個動作(像是投影、或是鏡射) 若 $A$ 是一個鏡射矩陣、 $\bb$ 是一個向量。 猜看看 $A^2\bb$ 會是什麼? 猜看看 $A^2$ 會是什麼? (下方程式碼中的矩陣是一個投影矩陣。 可以試試看。) <!-- eng start --> Imagine that multiplying a matrix is like applying an action, e.g., projection or reflection, to a vector. Let $A$ is a reflection matrix and $\bb$ a vector. Guess what is $A^2\bb$ and what is $A^2$? Provide your reasons. (You may run some examples by the code below.) <!-- eng end --> ```python ### code set_random_seed(0) a = vector(random_int_list(3)) A = 2*a.outer_product(a) / a.norm()**2 - identity_matrix(3) b = vector(random_int_list(3)) print("A =") show(A) print("b =", b) ``` :::warning Mathematically correct :smiley: Revise the writting according to the comments above. ::: ##### Exercise 3(b) -- answer here According to the questions, let $A$ is a reflection matrix and $\bb$ a vector. By running the code above, we get the matrix $A$ and vector $\bb$ $$A = \begin{bmatrix} \frac{-9}{25} & \frac{-12}{25} & \frac{-4}{5} \\ \frac{-12}{25} & \frac{-16}{25} & \frac{3}{5} \\ \frac{-4}{5} & \frac{3}{5} & 0 \end{bmatrix} $$ and $$ \bb = ( {-5},{-5},{0}). $$ After calculating through the program, we get the answer that $$ A^2\bb = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\ \begin{bmatrix} -5\\ -5\\ 0 \end{bmatrix} = \begin{bmatrix} −5\\ -5\\ 0 \end{bmatrix} $$ $$ A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. $$ After the above discussion and calculation, we can find that the square of the reflection matrix will be the identity matrix. $$ A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $$ Attach the python code for this question here: ```python ### code set_random_seed(0) a = vector(random_int_list(3)) A = 2*a.outer_product(a) / a.norm()**2 - identity_matrix(3) b = vector(random_int_list(3)) print("A =") show(A) print("b =", b) print() # Blank Line print() # Blank Line print("A^2 = ") show(A**2) print() # Blank Line print() # Blank Line print("A^2 * b =") show(A**2*b) ``` ##### Exercise 4 令 $A$、$B$、$C$ 為矩陣 $\bx$ 和 $\by$ 為向量、$k$ 為純量。 驗證以下的矩陣運算等式。 <!-- eng start --> Let $A$, $B$, and $C$ be matrices. Let $\bx$ and $\by$ be vectors. Let $k$ be a scalar. Verify the following identities. <!-- eng end --> ##### Exercise 4(a) 1. $(AB)C = A(BC)$. 2. $A(B + C) = AB + AC$. 3. $A(kB) = k(AB)$. 4. $A(\bx + \by) = A\bx + A\by$. 5. $A(k\bx) = k(A\bx)$. **[Provided by 蔡睿丞]** Suppose $A$, $B$, $C$ are $i\times s$ , $s\times t$ and $t\times j$ matrices, respectively. 1.$((AB)C)_{ij}=(\sum\limits_{s = 1}^n{A_{is}}{B_{st}})\sum\limits_{t = 1}^\ell{C_{tj}}=\sum\limits_{s = 1}^n{A_{is}}(\sum\limits_{t = 1}^\ell{B_{st}}{C_{tj}})=(A(BC))_{ij}.$ Suppose $A$ is an $i\times s$ matrix and $B$, $C$ be $s\times j$ matrices. 2.$(A(B + C))_{ij} = \sum\limits_{s = 1}^n{A_{is}}(B_{sj}+C_{sj})=\sum\limits_{s = 1}^n{A_{is}}B_{sj}+\sum\limits_{s = 1}^n{A_{is}}C_{sj}=(AB)_{ij}+(AC)_{ij}.$ 3.$(A(kB))_{ij}=\sum\limits_{s = 1}^n{A_{is}}(kB_{sj})=k\sum\limits_{s = 1}^n{A_{is}}B_{sj}=k(AB)_{ij}.$ Because we know ${\bf x} , {\bf y}$ are two vectors ,and we can write them as $s\times 1$ matrices. 4.$(A({\bf x} + {\bf y}))_{i1} = \sum\limits_{s = 1}^n{A_{is}}({\bf x}_{s1}+{\bf y}_{s1})=\sum\limits_{s = 1}^n{A_{is}}{\bf x}_{s1}+\sum\limits_{s = 1}^n{A_{is}}{\bf y}_{s1}=(A{\bf x})_{i1}+(A{\bf y})_{i1}.$ 5.$(A(k{\bf x}))_{i1}=\sum\limits_{s = 1}^n{A_{is}}(k{\bf x}_{s1})=k\sum\limits_{s = 1}^n{A_{is}}{\bf x}_{s1}=k(A{\bf x})_{i1}.$ ##### Exercise 4(b) 給一組例子使得 $AB \neq BA$。 <!-- eng start --> Find an example where $AB \neq BA$. <!-- eng end --> --- ##### Exercise 4(b) -- answer here Let $$ A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \\ \end{bmatrix}.$$ Then we get $$ AB = \begin{bmatrix} 19 & 22 \\ 43 & 50 \\ \end{bmatrix} \text{ and } BA = \begin{bmatrix} 23 & 34 \\ 31 & 46 \\ \end{bmatrix}. $$ Hence, we find an example where $AB \neq BA$. --- ##### Exercise 4(c) 若 $A$ 和 $B$ 皆為可逆矩陣。 則 $(AB)^{-1} = B^{-1}A^{-1}$。 <!-- eng start --> Show that if both $A$ and $B$ are invertible, then $(AB)^{-1} = B^{-1}A^{-1}$. <!-- eng end --> --- ##### Exercise 4(c) - answer here If $X$ and $Y$ are two matrices with $XY=YX=I$, then, $X^{-1}=Y$. Multiply $B^{-1}A^{-1}$ by $AB$. We get $(AB)B^{-1}A^{-1}=A(BB^{-1})A^{}=AIA^{-1}=AA^{-1}=I.$ Multiply $AB$ by $B^{-1}A^{-1}$. We get $B^{-1}A^{-1}(AB)=B^{-1}(AA^{-1})B=B^{-1}IB=BB^{-1}=I$. So, we can know that $(AB)( B^{-1}A^{-1})= ( B^{-1}A^{-1})(AB)=I$. Thus, $(AB)^{-1} = B^{-1}A^{-1}$. --- ##### Exercise 4(d) 定義一個方陣 $M$ 的**跡數**(trace)為其對角線上的所有元素相加,記作 $\tr(M)$。 則 $\tr(A +B) = \tr(A) + \tr(B)$。 <!-- eng start --> Define the **trace** of a square matrix $M$ as the sum of all its diagonal entries, denoted by $\tr(M)$. Show that $\tr(A +B) = \tr(A) + \tr(B)$. <!-- eng end --> ##### Exercise 4(e) 若 $A$ 和 $B$ 為 $2\times 2$ 的方陣。 則 $\det(AB) = \det(A) \cdot \det(B)$。 (實際上 $n\times n$ 都對,但我們還沒學到 $n\times n$ 方陣的行列式值怎麼算。) <!-- eng start --> Let $A$ and $B$ be $2\times 2$ matrices. Show that $\det(AB) = \det(A) \cdot \det(B)$. (In fact, this identity is true for any $n\times n$ matrices. However, we have not learned what is the determinant of an $n\times n$ matrix.) <!-- eng end --> :::info Collaboration: 1 4 problems: 4 extra problems: 2 moderator: +1 quality control: +1 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully