Maxwell's equation
$\nabla \times {\mathbf{E}(\mathbf{x},t)} = -\frac{\partial \mathbf{B}(\mathbf{x},t)}{\partial t}$
$\nabla \times {\mathbf{H}(\mathbf{x},t)} = \mathbf{J}(\mathbf{x},t) +\frac{\partial \mathbf{D}(\mathbf{x},t)}{\partial t}$
Consider inhomogenoues, isotropic material.
${\mathbf{D}(\mathbf{x},t)}={\epsilon(\mathbf{x})}{\mathbf{E}(\mathbf{x},t)}$
${\mathbf{B}(\mathbf{x},t)}={\mu(\mathbf{x})}{\mathbf{H}(\mathbf{x},t)}$
3-D