# FDTD Formulation ## Maxwell's equation $\nabla \times {\mathbf{E}(\mathbf{x},t)} = -\frac{\partial \mathbf{B}(\mathbf{x},t)}{\partial t}$ $\nabla \times {\mathbf{H}(\mathbf{x},t)} = \mathbf{J}(\mathbf{x},t) +\frac{\partial \mathbf{D}(\mathbf{x},t)}{\partial t}$ Consider inhomogenoues, isotropic material. ${\mathbf{D}(\mathbf{x},t)}={\epsilon(\mathbf{x})}{\mathbf{E}(\mathbf{x},t)}$ ${\mathbf{B}(\mathbf{x},t)}={\mu(\mathbf{x})}{\mathbf{H}(\mathbf{x},t)}$ ### 3-D $\left\{ \begin{matrix} \frac{\partial{H_x}}{\partial{t}} = \frac{-1}{\mu}\left(\frac{\partial{E_z}}{\partial{y}} - \frac{\partial{E_y}}{\partial{z}}\right) - \frac{1}{\mu}\left(M_{sx} + \sigma^{*}H_x \right) \\ \frac{\partial{H_y}}{\partial{t}} = \frac{-1}{\mu}\left(\frac{\partial{E_x}}{\partial{z}} - \frac{\partial{E_z}}{\partial{x}}\right) - \frac{1}{\mu}\left(M_{sy} + \sigma^{*}H_y \right) \\ \frac{\partial{H_z}}{\partial{t}} = \frac{-1}{\mu}\left(\frac{\partial{E_y}}{\partial{x}} - \frac{\partial{E_x}}{\partial{y}}\right) - \frac{1}{\mu}\left(M_{sz} + \sigma^{*}H_z \right) \\ \frac{\partial{E_x}}{\partial{t}} = \frac{1}{\epsilon}\left(\frac{\partial{H_z}}{\partial{y}} - \frac{\partial{H_y}}{\partial{z}}\right) - \frac{1}{\epsilon}\left(J_{sx} + \sigma E_x \right) \\ \frac{\partial{E_y}}{\partial{t}} = \frac{1}{\epsilon}\left(\frac{\partial{H_x}}{\partial{z}} - \frac{\partial{H_z}}{\partial{x}}\right) - \frac{1}{\epsilon}\left(J_{sy} + \sigma E_y \right) \\ \frac{\partial{E_z}}{\partial{t}} = \frac{1}{\epsilon}\left(\frac{\partial{H_y}}{\partial{x}} - \frac{\partial{H_x}}{\partial{y}}\right) - \frac{1}{\epsilon}\left(J_{sz} + \sigma E_z \right) \\ \end{matrix} \right.$ ### 2-D Assuming z-direction directive as zero. $\left\{ \begin{matrix} \frac{\partial{H_x}}{\partial{t}} = \frac{-1}{\mu}\left(\frac{\partial{E_z}}{\partial{y}} \right) - \frac{1}{\mu}\left(M_{sx} + \sigma^{*}H_x \right) \\ \frac{\partial{H_y}}{\partial{t}} = \frac{-1}{\mu}\left( - \frac{\partial{E_z}}{\partial{x}}\right) - \frac{1}{\mu}\left(M_{sy} + \sigma^{*}H_y \right) \\ \frac{\partial{H_z}}{\partial{t}} = \frac{-1}{\mu}\left(\frac{\partial{E_y}}{\partial{x}} - \frac{\partial{E_x}}{\partial{y}}\right) - \frac{1}{\mu}\left(M_{sz} + \sigma^{*}H_z \right) \\ \frac{\partial{E_x}}{\partial{t}} = \frac{1}{\epsilon}\left(\frac{\partial{H_z}}{\partial{y}}\right) - \frac{1}{\epsilon}\left(J_{sx} + \sigma E_x \right) \\ \frac{\partial{E_y}}{\partial{t}} = \frac{1}{\epsilon}\left(- \frac{\partial{H_z}}{\partial{x}}\right) - \frac{1}{\epsilon}\left(J_{sy} + \sigma E_y \right) \\ \frac{\partial{E_z}}{\partial{t}} = \frac{1}{\epsilon}\left(\frac{\partial{H_y}}{\partial{x}} - \frac{\partial{H_x}}{\partial{y}}\right) - \frac{1}{\epsilon}\left(J_{sz} + \sigma E_z \right) \\ \end{matrix} \right.$ ### 1-D Assuming z-direction and y-direction directives are both zero. $\left\{ \begin{matrix} \frac{\partial{H_x}}{\partial{t}} = - \frac{1}{\mu}\left(M_{sx} + \sigma^{*}H_x \right) \\ \frac{\partial{H_y}}{\partial{t}} = \frac{-1}{\mu}\left( - \frac{\partial{E_z}}{\partial{x}}\right) - \frac{1}{\mu}\left(M_{sy} + \sigma^{*}H_y \right) \\ \frac{\partial{H_z}}{\partial{t}} = \frac{-1}{\mu}\left(\frac{\partial{E_y}}{\partial{x}}\right) - \frac{1}{\mu}\left(M_{sz} + \sigma^{*}H_z \right) \\ \frac{\partial{E_x}}{\partial{t}} = - \frac{1}{\epsilon}\left(J_{sx} + \sigma E_x \right) \\ \frac{\partial{E_y}}{\partial{t}} = \frac{1}{\epsilon}\left(- \frac{\partial{H_z}}{\partial{x}}\right) - \frac{1}{\epsilon}\left(J_{sy} + \sigma E_y \right) \\ \frac{\partial{E_z}}{\partial{t}} = \frac{1}{\epsilon}\left(\frac{\partial{H_y}}{\partial{x}}\right) - \frac{1}{\epsilon}\left(J_{sz} + \sigma E_z \right) \\ \end{matrix} \right.$ ## Yee grid, FDTD Yee grid from Meep document. <img src='https://meep.readthedocs.io/en/latest/images/Yee-cube.png'></img> Time step - Leap Frog ### Three dimensional FDTD formulation $\left\{ \begin{matrix} \mathbf{E} = (E_x|^{n+\frac{1}{2}}_{i, j+\frac{1}{2}, k+\frac{1}{2}}, E_y|^{n+\frac{1}{2}}_{i+\frac{1}{2}, j, k+\frac{1}{2}}, E_z|^{n+\frac{1}{2}}_{i+\frac{1}{2}, j+\frac{1}{2}, k}) \\ \mathbf{H} = (H_x|^{n}_{i+\frac{1}{2}, j, k}, H_y|^{n}_{i, j+\frac{1}{2}, k}, H_z|^{n}_{i, j, k+\frac{1}{2}}) \\ \end{matrix} \right.$ $\left\{ \begin{matrix} \frac{\partial{E_x}}{\partial{t}} = \frac{1}{\epsilon}\left(\frac{\partial{H_z}}{\partial{y}} - \frac{\partial{H_y}}{\partial{z}}\right) - \frac{1}{\epsilon}\left(J_{sx} + \sigma E_x \right) \\ \frac{\partial{E_x}}{\partial{t}} = \frac{\left (E_x|^{n+\frac{1}{2}}_{i, j+\frac{1}{2}, k+\frac{1}{2}} - E_x|^{n-\frac{1}{2}}_{i, j+\frac{1}{2}, k+\frac{1}{2}} \right )}{\Delta t} \end{matrix} \right.$ $\frac{\partial{E_x}}{\partial{t}} = \frac{1}{\epsilon}\left(\frac{\partial{H_z}}{\partial{y}} - \frac{\partial{H_y}}{\partial{z}}\right) - \frac{1}{\epsilon}\left(J_{sx} + \sigma E_x \right)$ $\frac{\left (E_x|^{n+\frac{1}{2}}_{i, j+\frac{1}{2}, k+\frac{1}{2}} - E_x|^{n-\frac{1}{2}}_{i, j+\frac{1}{2}, k+\frac{1}{2}} \right )}{\Delta t} = \frac{1}{\epsilon} \left(\frac{H_z|^{n}_{i, j+\frac{1}{2}, k+\frac{1}{2}} - H_z|^{n}_{i, j-\frac{1}{2}, k+\frac{1}{2}}}{\Delta y} - \frac{H_y|^{n}_{i+\frac{1}{2}, j, k+\frac{1}{2}} - H_y|^{n}_{i + +\frac{1}{2}, j, k-\frac{1}{2}}}{\Delta z}\right)$ ## Numerical Dispersion and Courant Condition ## Reference ## Appendix