## 型I 錯誤與型II錯誤  ### 臨界值法 1. **建立虛無&對立假設**:$H_{0}: \mu \leq 0.3 \text{ vs. } H_{1} > 0.3$ 2. **給定 $H_{0}$ 為真下,建構樞紐量**:$\varphi = \dfrac{\bar{x} - \mu_{0}}{s/\sqrt{n}} \sim t(n - 1)$ 3. **建構拒絕域**:$RR = \{\varphi: |\varphi| > t_{0.01} (8) = 2.896\}$ 4. 將樣本結果代入:$\varphi = \dfrac{0.456 - 0.3}{0.2128/\sqrt{9}} = 2.199 < t_{0.01}(8)$ 5. **下結論**:無法拒絕 $H_{0}$,沒有證據支持 $H_{1}$ 為真 ### $p$-值法 $p$-值為**與樣本結果同樣極端的機率總和**。給定樞紐量的抽樣分配為 $\varphi(\cdot)$,且檢定統計量為 $\varphi*$,$p-值$的計算為: - 右尾檢定之$p-值 = P(\varphi \geq \varphi^{*})$ - 左尾檢定之$p-值 = P(\varphi \leq \varphi^{*})$ 此例當中,抽樣分配為 $t$ 分配,檢定統計量為 $\varphi^{*} = 2.199$,且為右尾檢定,因此 $$ p\text{-值} = P[t_{0.01}(8) \geq 2.199] $$ 查 $t$-值表後可以得知此檢定的 $p$-值介於 $0.025$ 與 $0.05$ 之間。 
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up