# 幾何分布 ###### tags: `probability-theory` ## 確率関数 $$ p\left(x\right) = \left(1-p\right)^{x-1} p $$ ## 平均 $$ \begin{align} \sum_{x=1}^{\infty} x \left(1-p\right)^{x-1} p &= \sum_{x=1}^{\infty} \sum_{y=x}^{\infty} \left(1-p\right)^{y-1} p \notag \\ &= \sum_{x=1}^{\infty} p \frac{\left(1-p\right)^{x-1}-0}{p} \notag \\ &= \sum_{x=1}^{\infty} \left(1-p\right)^{x-1} \notag \\ &= \frac{1-0}{p} \notag \\ &= \frac{1}{p} \end{align} $$ $x\left(1-p\right)^{x-1}$が$-\left(1-p\right)^x$の微分であることを見つければ、次の計算も可能である。 $$ \begin{align} \sum_{x=1}^{\infty} x \left(1-p\right)^{x-1} p &= p\left\{-\sum_{x=0}^{\infty} \left(1-p\right)^x \right\}^{\prime} \notag \\ &= p\left\{\frac{-1+p}{p}\right\}^{\prime} \notag \\ &= p\left\{\frac{-1}{p}+1\right\}^{\prime} \notag \\ &= \frac{p}{p^2} \notag \\ &= \frac{1}{p} \end{align} $$ ## 分散 $x\left(x-1\right)\left(1-p\right)^{x-2}$が$\left(1-p\right)^x$の2階微分であることを見つければ、次の計算ができる。 $$ \begin{align} \sum_{x=1}^{\infty} x \left(x-1\right)\left(1-p\right)^{x-1} p &= \sum_{x=2}^{\infty} x \left(x-1\right)\left(1-p\right)^{x-1} p \notag \\ &= \left(1-p\right)\sum_{x=2}^{\infty} x \left(x-1\right)\left(1-p\right)^{x-2} p \notag \\ &= p\left(1-p\right)\left\{\sum_{x=0}^{\infty} \left(1-p\right)^x \right\}^{\prime\prime} \notag \\ &= p\left(1-p\right)\left\{\frac{1-p}{p}\right\}^{\prime\prime} \notag \\ &= p\left(1-p\right)\left\{\frac{1}{p}-1\right\}^{\prime\prime} \notag \\ &= \frac{2p\left(1-p\right)}{p^3} \notag \\ &= \frac{2\left(1-p\right)}{p^2} \end{align} $$ これより $$ V\left[X\right] = \frac{2\left(1-p\right)}{p^2} +\frac{1}{p} - \frac{1}{p^2} = \frac{1-p}{p^2} $$ ## モーメント母関数 $$ \begin{align} \sum_{x=1}^{\infty} e^{tx}\left(1-p\right)^{x-1} p &= e^t \sum_{x=1}^{\infty} \left\{e^t\left(1-p\right)\right\}^{x-1} p \notag \\ &= e^t \sum_{x=1}^{\infty} \left\{e^t\left(1-p\right)\right\}^{x-1} p \notag \\ &= p e^t \frac{1-0}{1-e^t\left(1-p\right)} \notag \\ &= \frac{p e^t}{1-\left(1-p\right)e^t} \notag \\ &= \frac{p}{e^{-t}-1+p} \notag \\ \end{align} $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up