# ガンマ分布 ###### tags: `probability-theory` ## 確率密度関数 $$ f\left(x\right) = \frac{1}{\Gamma\left(\alpha\right)}\frac{1}{\beta}\left(\frac{x}{\beta}\right)^{\alpha-1}e^{-x/\beta} = \frac{x^{\alpha-1}}{\beta^\alpha \Gamma\left(\alpha\right)} \exp\left(-\frac{x}{\beta}\right) $$ ## 確率密度関数の形状 ガンマ分布の密度関数は、$x\rightarrow\infty$で$0$に収束する。 $$ \lim_{x\rightarrow\infty} f\left(x\right) = 0 $$ また$x\rightarrow 0$の挙動は$\alpha$の$1$との大小関係で定まる。 $$ \lim_{x\rightarrow 0} f\left(x\right) = \left\{ \begin{array}{ll} 0 & \alpha>1 \\ \infty & \alpha<1 \end{array} \right. $$ 密度関数の導関数 $$ \begin{align} \frac{\partial}{\partial x} f\left(x\right) &= \frac{\left(\alpha-1\right)x^{\alpha-2}}{\beta^\alpha \Gamma\left(\alpha\right)} \exp\left(-\frac{x}{\beta}\right) - \frac{x^{\alpha-1}}{\beta^{\alpha+1} \Gamma\left(\alpha\right)} \exp\left(-\frac{x}{\beta}\right) \notag \\ &= \frac{x^{\alpha-2}}{\beta^\alpha \Gamma\left(\alpha\right)}\exp\left(-\frac{x}{\beta}\right)\times \left(\alpha-1-\frac{x}{\beta} \right) \end{align} $$ は$\alpha\leq 1$ならば常に負、$\alpha>1$ならば$x=\left(\alpha-1\right)\beta$で符号が正から負に変わる。 ## 平均 $$ E\left[X\right] = \alpha\beta $$ $$ \begin{align} E\left[X\right] &= \int_{0}^{\infty} x \frac{x^{\alpha-1}}{\beta^\alpha \Gamma\left(\alpha\right)} \exp\left(-\frac{x}{\beta}\right)dx \notag \\ &= \int_{0}^{\infty} \frac{x^{\alpha}}{\beta^\alpha \Gamma\left(\alpha\right)} \exp\left(-\frac{x}{\beta}\right)dx \notag \\ &= \int_{0}^{\infty} \frac{\alpha\beta}{\beta} \frac{x^{\alpha}}{\beta^\alpha \alpha \Gamma\left(\alpha\right)} \exp\left(-\frac{x}{\beta}\right)dx \notag \\ &= \alpha\beta \int_{0}^{\infty} \frac{x^{\alpha}}{\beta^{\alpha+1} \Gamma\left(\alpha+1\right)} \exp\left(-\frac{x}{\beta}\right)dx \notag \\ &= \alpha\beta \times 1 \notag \\ &= \alpha\beta \end{align} $$ ## 分散 $$ V\left[X\right] = \alpha\beta^2 $$ $$ \begin{align} E\left[X^2\right] &= \int_{0}^{\infty} x^2 \frac{x^{\alpha-1}}{\beta^\alpha \Gamma\left(\alpha\right)} \exp\left(-\frac{x}{\beta}\right)dx \notag \\ &= \int_{0}^{\infty} \frac{x^{\alpha+1}}{\beta^\alpha \Gamma\left(\alpha\right)} \exp\left(-\frac{x}{\beta}\right)dx \notag \\ &= \int_{0}^{\infty} \frac{\left(\alpha+1\right)\alpha\beta^2}{\beta^2} \frac{x^{\alpha+1}}{\beta^\alpha \left(\alpha+1\right) \alpha \Gamma\left(\alpha\right)} \exp\left(-\frac{x}{\beta}\right)dx \notag \\ &= \left(\alpha+1\right)\alpha\beta^2 \int_{0}^{\infty} \frac{x^{\alpha}}{\beta^{\alpha+2} \Gamma\left(\alpha+2\right)} \exp\left(-\frac{x}{\beta}\right)dx \notag \\ &= \left(\alpha+1\right)\alpha\beta^2 \times 1 \notag \\ &= \left(\alpha+1\right)\alpha\beta^2 \end{align} $$ より $$ V\left[X\right] = \left(\alpha+1\right)\alpha\beta^2 - \alpha^2\beta^2 = \alpha\beta^2 $$ ## モーメント母関数 $$ \begin{align} M\left(t\right) &= E\left[e^{tX}\right] \notag \\ &= \int_{0}^{\infty} e^{tx} \frac{x^{\alpha-1}}{\beta^\alpha \Gamma\left(\alpha\right)} \exp\left(-\frac{x}{\beta}\right)dx \notag \\ &= \int_{0}^{\infty} \frac{x^{\alpha-1}}{\beta^\alpha \Gamma\left(\alpha\right)} \exp\left(-\frac{x}{\beta}+tx\right)dx \notag \\ &= \int_{0}^{\infty} \frac{x^{\alpha-1}}{\beta^\alpha \Gamma\left(\alpha\right)} \exp\left(-\frac{x\left(1-\beta t\right)}{\beta}\right)dx \notag \\ &= \int_{0}^{\infty} \frac{x^{\alpha-1}}{\beta^\alpha \Gamma\left(\alpha\right)} \exp\left(-\frac{x}{\beta/\left(1-\beta t\right)}\right)dx \notag \\ &= \left(\frac{1}{1-\beta t}\right)^\alpha \int_{0}^{\infty} \frac{x^{\alpha}}{\left(\beta/\left(1-\beta t\right)\right)^\alpha \Gamma\left(\alpha\right)} \exp\left(-\frac{x}{\beta/\left(1-\beta t\right)}\right)dx \notag \\ &= \frac{1}{\left(1-\beta t\right)^\alpha} \times 1 \notag \\ &= \frac{1}{\left(1-\beta t\right)^\alpha} \end{align} $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up