# 正規分布 ###### tags: `probability-theory` ## 確率密度関数 $$ f\left(x\right) = \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{\left(x-\mu\right)^2}{2\sigma^2}\right\} = \frac{1}{\sqrt{2\pi}\sigma}\exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\} $$ ## 平均 最も短い計算は、次の通り。 $$ \begin{align} E\left[X-\mu\right] &= \int_{-\infty}^\infty \left(x-\mu\right) \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{\left(x-\mu\right)^2}{2\sigma^2}\right\} dx \notag \\ &= 0 \end{align} $$ これは、$y=x-\mu$が$\mu$に関して奇関数、$y=\exp\left\{-\frac{\left(x-\mu\right)^2}{2\sigma^2}\right\}$が$\mu$に関して偶関数であることから、明らか。よって $$ E\left[X-\mu\right] = E\left[X\right]-\mu = 0 $$ が示され、 $$ E\left[X\right]=\mu $$ を得る。 少し長いが、やはり短い計算は次の通り。 $$ \begin{align} E\left[X\right] &= \int_{-\infty}^\infty x \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{\left(x-\mu\right)^2}{2\sigma^2}\right\} dx \notag \\ &= \int_{-\infty}^\infty \left(y + \mu\right) \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{y^2}{2\sigma^2}\right\} dx \notag \\ &= \int_{-\infty}^\infty y\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{y^2}{2\sigma^2}\right\} dx + \mu \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{y^2}{2\sigma^2}\right\} dx \notag \\ &= 0 + \mu \times 1 \notag \\ &= \mu \end{align} $$ ここでも奇関数と偶関数の積の定積分が$0$となることと、全確率が$1$であることを用いている。 ## 分散 $$ \begin{align} E\left[\left(X-\mu\right)^2\right] &= \int_{-\infty}^\infty \left(x-\mu\right)^2 \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{\left(x-\mu\right)^2}{2\sigma^2}\right\} dx \notag \\ &= \int_{-\infty}^\infty y^2 \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{y^2}{2\sigma^2}\right\} dy \notag \\ &= \sigma^2 \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{y^2}{2\sigma^2}\right\} dy \notag \\ &= \sigma^2 \end{align} $$ ここで$y=x-\mu$という変数変換と $$ \begin{align} \int_{-\infty}^\infty y^2 \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{y^2}{2\sigma^2}\right\} dy &= \frac{\sigma^2}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^\infty y\left\{\exp\left\{-\frac{y^2}{2\sigma^2}\right\}\right\}^{\prime} dy \notag \\ &=\frac{\sigma^2}{\sqrt{2\pi\sigma^2}} \left[-y \exp\left\{-\frac{y^2}{2\sigma^2}\right\}\right]_{-\infty}^{\infty} - \frac{\sigma^2}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} \left\{- \exp\left\{-\frac{y^2}{2\sigma^2}\right\} \right\}dy \notag \\ &= \left[0-0\right] + \sigma^2\times 1 \end{align} $$ という部分積分を用いた。 ## モーメント母関数 基本的には、指数の肩で平方完成を行うだけの計算で導ける。 $$ \begin{align} M\left(t\right) &= E\left[e^{tX}\right] \notag \\ &= \int_{-\infty}^{\infty} e^{tx} \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{\left(x-\mu\right)^2}{2\sigma^2}\right\} dx \notag \\ &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{\left(x-\mu\right)^2}{2\sigma^2}+tx\right\} dx \notag \\ &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{\left(x-\mu\right)^2-2\sigma^2tx}{2\sigma^2}\right\} dx \notag \\ &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{\left(x-\mu+\sigma^2 t\right)^2}{2\sigma^2}+\frac{2\mu\sigma^2 t+\sigma^4 t^2}{2\sigma^2}\right\} dx \notag \\ &= \exp\left(\mu t+\frac{\sigma^2 t^2}{2}\right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{\left(x-\mu+\sigma^2 t\right)^2}{2\sigma^2}\right\} dx \notag \\ &= \exp\left(\mu t+\frac{\sigma^2 t^2}{2}\right) \times 1 \notag \\ &= \exp\left(\mu t+\frac{\sigma^2 t^2}{2}\right) \end{align} $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up