Exam 3


2

At first, we have

A=[1221]=12[1111][1003][1111].
So,
|A|=12[1111][1003][1111]=[2112]=[|T|]μ,|A|=12[1111][1003][1111]=[|T|]μ,|A|4=12[1111][10034][1111]=[|T|4]μ.


3

Chapter 6 extra note 1


4

Chapter 6 extra note 1


5

Let

nN, given
pPn
, we have
Tn+1(p)=dn+1dxn+1p=0
, where
0
denotes the zero polynomial. So
T
is nilpotent.

Let

nN, given
p=a0+a1x+anxn
, if
p
is an eigenvector corresponds to eigenvalue
λ
, then we should have
T(p)=a1++nanxn1=λ(a0+a1x+anxn).

Equalizing the coefficients gives
an==a1=0.

Therefore, the only eigenvalue is
λ=0
with eigenvectors
span{1}{0}
.


6.

Let

TL(P2([1,1])) with
T(p)=ddxp(x)
. Determine
T(a+bx+cx2)
, where
T
is the pseudo-inverse of
T
, and
a,b,cR
.

We already know that one of its orthonormal basis is

β={P0(x)=12,P1(x)=32x,P2(x)=58(3x21)}.

  1. Matrix representation

The matrix representation of

T is
A=[T]β=[0300015000],

so
AA=[0000300015],|A|=[0000300015].

That gives
σ1=15
,
σ2=3
and
v1=[0,0,1]T
,
v2=[0,1,0]T
.

We can then calculate

w as
w1=115Av1=[0,1,0]T,w2=13Av2=[1,0,0]T.

As a result, we have the SVD of

A:
A=[w1w2][σ100σ2][v1Tv2T]=[011000][15003][001010].

Regarding the pseudo-inverse, we have
A=[000110][1150013][010100].

T

Similarly, the Schmidt decomposition of

T as
T(p)=15p,P2P1(x)+3p,P1P0(x).

and

T(p)=115p,P1P2(x)+13p,P0P1(x).

Finally, we note that

a+bx+cx2=(2a+23c)P0(x)+(23b)P1(x)+(1385c)P2(x).
So, let
p=a+bx+cx2
we already have
p,P1=23b,p,P0=2a+23c.

That gives
T(a+bx+cx2)=115(23b)P2(x)+13(2a+23c)P1(x)=b6(3x21)+(a+c3)x.


7

(a)

Given

vV with
v1
,
(T+S)v=Tv+SvTv+Svmaxv1Tv+maxv1Sv=σ1(T)+σ1(S).

So,
σ1(T+S)=maxv1(T+S)vσ1(T)+σ1(S).

(b)

Given

v1V with
v1=1
that is the eigenvector corresponds to the largest eigenvalue
λ1
, i.e.,
Tv1=λ1v1.

We have
λ12=Tv1,Tv1=Tv12maxv1Tv2=σ12.

Since
σ10
, we obtain
|λ1|σ1.