# 對數律 - 蒐羅了許多小的題目,整合在同一個單元中 [toc] ### 第一題: - 若$a=log_23、b=log_25,求4^{a+b+1}$ - 想法:$1=log_22$ - 題解: $\begin{split}a+b+1=&log_23+log_25+log2_2\\=&log_2(2\times 3\times 5)\\=&log_230\end{split}$ $\begin{split}4^{log_230}=&2^{2log_230}=2^{log_230^2}=30^2=900\end{split}$ > [name=戴偉璿][time=Sun, Jan 23, 2022 11:14 PM] ### 第二題: - 求在$log_91、log_92、log_93、...、log_92020$之中所有的有理數$\mathbb{Q}$之和 - 想法:先找整數,再找到規律 - 題解: $設log_9S\in\mathbb{Q},log_9S=\cfrac{logS}{log9}=\cfrac{1}{2}\times \cfrac{logS}{log3}=\cfrac{1}{2}\times \cfrac{log3^t}{log3}=\cfrac{1}{2}t,t\in\mathbb{Q}$ $又0\le 3^t\le2020,且t\in \mathbb{Q},t=\{0,1,2,3,4,5,6\}$ $Ans.\cfrac{1}{2}\displaystyle\sum_{t=0}^{6}{t}=\cfrac{21}{2}$ ### 第三題 : - 求$\cfrac{1}{49}^{log_7\frac{2}{3}}+3^{\frac{1}{log_53}}+log\sqrt[4]{1000}$ - 想法:單純對數律與指數律的運算 - 題解: 原式:$7^{-2log_7\frac{2}{3}}+3^{log_35}+log10^\frac{3}{4}=\cfrac{9}{4}+5+\cfrac{3}{4}=8$ $Ans.8$