# Object Detection Develop History-1 ==Two Stage Method== stage 1 = region proposal stage 2 = feature extract + bounding box R-CNN Fast R-CNN Faster R-CNN R-FCN --- ==R-CNN== 用傳統的computer vison 的selective search找region proposal 但是stage 2用CNN找FEATURE + BOUNDING BOX + SVM辨識目標種類  缺點: 太慢 ---- ==Fast R-CNN== :::info 改進: 每個region proposal共用CNN來找feature&SVM換成Neural Network來加速 :::  缺點: 後面分類物體 + 給bounding box變快,前面的region proposal就顯得很慢 ---- ==Faster R-CNN== :::info 改進: region proposal也用CNN來加速 :::  缺點: 每個proposal區域的分類還是要單獨算一次 ---- ==R-FCN== :::info 改進: 整張影像的分類只要算一次 :::  ---- Two Stage Method Pros and Cons === Accuracy: High Speed: Slow(Relatively) 因此產生了不再分兩個階段的method ---> One Stage Method One Stage Method === Accuracy: Low Speed: fast(Relatively) ex. YOLO 將兩個階段的CNN合併成一個網路,同時選取proposal + classification 但是,還有一種加速two stage的method---> Light weighted Light weighted Two Stage ===  ex. PVANet --- Summary ===  :::warning YOLO已經有5代了 ::: ###### tags: `SAR` `Deep learning` `Object Detection` `review`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up