Try   HackMD

Object Detection Develop History-3

==One Stage Method ==
stage 1 = region proposal + feature extract + bounding box

YOLO
SSD

YOLO V1
有B種物體
輸入影像透過CNN得到FEATURE MAP
將照片分成SxS的格子
若物體的中心掉在格子內,則由該格去算對每個物體的信心分數(B個)
並且計算物體座標

Image Not Showing Possible Reasons
  • The image file may be corrupted
  • The server hosting the image is unavailable
  • The image path is incorrect
  • The image format is not supported
Learn More →

YOLO 誤差
與Fast R-CNN相比,YOLO對背景的辨識率很高
但是物體的定位誤差比較大

定位誤差
相鄰物體過多,yolo較難偵測
因為每個格子只能輸出兩個物體


SSD
Single Shot MultiBox Detection
一樣是one stage的做法,但是改良了yolo的一些缺點
yolo 對小物體偵測不佳,SSD則加入Multi-scale
使用預先設定好的bounding box進行預測,加快訓練速度
且IOU設定為0.5以上才算是有偵測到

Image Not Showing Possible Reasons
  • The image file may be corrupted
  • The server hosting the image is unavailable
  • The image path is incorrect
  • The image format is not supported
Learn More →

==物體大小與FEATURE MAP 關係 ==
比較大的物體 -> 在低解析度,ex. 4x4 大小的feature map 可以偵測
比較小的物體 -> 在高解析度,ex. 8x8 大小的feature map 可以偵測

Image Not Showing Possible Reasons
  • The image file may be corrupted
  • The server hosting the image is unavailable
  • The image path is incorrect
  • The image format is not supported
Learn More →


因此SSD拿掉YOLO最後的Fully connect層,改用multi-scale network
來解決不同大小物體的分類跟定位問題

Image Not Showing Possible Reasons
  • The image file may be corrupted
  • The server hosting the image is unavailable
  • The image path is incorrect
  • The image format is not supported
Learn More →


更多的YOLO vs SSD

tags: SAR Deep learning Object Detection review