# Trends in Machine Learning for Unmanned Aerial Vehicle Applications - 鄭聖文 {%hackmd @mopcon/rkdTi5NTR %} > 從這開始 * [投影片連結](https://drive.google.com/file/d/1UmSeU8Y63s4cASBFNWM_zi5ll2J9EIJx/view?usp=sharing) * Introduction to Artificial Neural Network * Neuron (perceptron) * book: [hands-on convolutional neural with tensorflow](https://www.tenlong.com.tw/products/9781789130331)( * (Deep) Neural network (multi-layer perceptron) > 是一種通用函式擬合器,可以用來模擬任何物理現象的模型。 * book: [data-driven science and engineering](https://www.tenlong.com.tw/products/9781009098489?list_name=srh) * 可以較輕鬆將類神經網路用線性代數表達。 * Softmax function ![P_20241026_092243](https://hackmd.io/_uploads/rJOOcaKlJe.jpg) * Training a Neural Network (Back Propagation) * How to Train an Artifical Neural Network(Prof. Youn-Long Lin) * Residual Network (ResNet) 2015- * Dropout * Encoder-Decoder/AutoEncoder > 萃取後,再重建。 * Object Detection and Segmentation * Object tracking applications of drones * Ukraine War * Agriculture * Firefighting drones in China * Search and Rescue * Border Patrol * Bridge Inspection * Feature extraction of convolutional neural network (CNN) * low level feature: edges, dark, spots * mid level feature: eyes, ears, nose * high level feature: facial structure * Max pooling * [Pooling in Convolutional Neural Networks](https://www.digitalocean.com/community/tutorials/pooling-in-convolutional-neural-networks) * Example: VGG16 network for image classification * VGG16 (Visual Geometry Group Architecture 16), University of Oxford 2014 ![VGG16_IMG](https://miro.medium.com/v2/resize:fit:827/1*UeAhoKM0kJfCPA03wt5H0A.png) * Object Detection (YOLO v1) * YOLO, You Only Look Once * Fast R-CNN VGG-16 vs CNN * mAP(mean Average Precision): 73.2% vs 63.4% * FPS: 7 vs 45 * Semantic segmentation: segNet * Auto-Driven vehicle * Semantic segmentation: U-Net * Learn to control: Reinforcement Learning * Reinforcement Learning (RL) * There is an Agent that interacts with the environment * value function $V$ and quality function $Q$ * Deep Reinforcement Learning * 傳統而言,以力學與數學進行分析與控制。 * With Deep Reinforcement Learning * [Control of a Quadrotor with Reinforcement Learning, 2017](https://arxiv.org/pdf/1707.05110) * Champion-level flight of Quadrotor with Reinforcement Learning * Collision-free Flight with Reinforcement Learning * Digial Twin * Software simulators for robots * Transformer Model * transformer and attention model * Encoder-Decoder architecture * Embeddings are vectors in high dimensions * variants * Encoder-only * Decoder-only * Encoder-Decoder * $Attention(Q, K, V)$ * Self-attention vs Cross-attention * Vision Transformer * Model generalization * Visual Transformer (ViT)