--- title: "ISAT: HSI" date: 2021-12-10 09:00 categories: [Image S9, ISAT] tags: [Image, S9, ISAT] math: true --- Lien de la [note Hackmd](https://hackmd.io/@lemasymasa/ryJEsce5K) # Introduction ## Hyperspectral images Les acquisitions dans le domaine spectral (les bandes) presente un echantillonage beaucoup plus fin. ![](https://i.imgur.com/bveAxMR.png) L'image est en fausse couleur, on a des tenseurs a 3 voies: $x$, $y$ et les bandes spectrales. Sur cette image on a associe 3 bandes au RGB, c'est une reconstruction partielle mais ca permet de visualiser. C'est des images aeriennes du massif du Mont Blanc. *Quelle est la variable physique qui nous interesse ?* :::success Ici, la variable physique qui nous interesse si on veut faire une analyse continue de la scene est **la reflectance**. ::: S'il n'y a pas de transmission, la reflectance est directement liee a l'absorbance. On souhaite avoir des images exploitable, on veut un rapport image/bruit suffisant. On a typiquement un seul capteur qui a un systeme de diffraction optique (prisme, etc.), la lumiere va arriver et etre diffractee et reflechie dans differentes longueurs d'onde. :::danger On n'arrive pas a voir un bloc entier tout d'un coup lors d'une acquisition ::: :::warning Si on veut 600 bandes, on va devoir faire un compromis sur la resolution spatiale et spectrale. ::: On va avoir des imageurs qui ont une faible resolution spatiale ($\sim 30m$) mais il y a un 2e capteur associe qui fait l'acquisition d'une bande panchromatique. ![](https://i.imgur.com/3syQIgF.png) On arrive a avoir des informations assez precises sur la reflectance des differents materiaux. On a $\sim 600$ echantillons pour la reflectance. Des qu'on passe dans l'infrararouge, on a une reflectance plus importante, due a la presence de la **chlorophyle**. Toutes les bandes sur le "red edge" ($\sim 0.7\mu m$), ou on a la montee raide du spectre de reflectance de la vegetation, qui permet de discriminer certaines especes. :::success C'est la **variable physique d'interet** que l'on essaie d'extraire. ::: ![](https://i.imgur.com/uHLfe5d.png) ### Example ![](https://i.imgur.com/YBboNVS.png) *Quel est l'interet de faire des acquisitions au-dela du domaine visible ?* Regardons differentes bandes des plantes: ![](https://i.imgur.com/vapwbhk.png) ![](https://i.imgur.com/UTdkBst.png) Dans le proche IR: ![](https://i.imgur.com/29Y4dsT.png) :::success On trouve une difference dans la 3e plante (elle est en *plastique*) ::: ## Applications Dans des contextes pas forcements lie a la teledetection: - Detection d'hydrocarbure dans l'eau ![](https://i.imgur.com/JeFQwzA.png) :::warning L'huile superposee a de l'eau a un spectre relativement proche de celui de l'eau ::: Si on fait le traitement d'une image avec plus d'acquisition: ![](https://i.imgur.com/jBNomzy.png) :::success On extrait de l'information "*cachee*" ::: - Monitorage et caracterisation des differents mineraux ![](https://i.imgur.com/1SRSCHu.png) - Biomedical - Detection de tumeurs de la peau ![](https://i.imgur.com/hVXeq7Q.png) - Astronomie - Telescope "Muse" ![](https://i.imgur.com/1Yj7MQN.png) - L'art - Certaines oeuvres ont des proprietes de transmittance variant selon la longueur d'onde - C'est possible de detecter des couches invisibles a l'oeil nu ![](https://i.imgur.com/H3oT5WC.png) - Controle non-destructif - Evolution d'un poisson dans le temps - Detection precoce de la peremption de l'echantillon ![](https://i.imgur.com/BfgSEHD.png) ![](https://i.imgur.com/l3mHv4v.png) ## Spectral Unmixing ![](https://i.imgur.com/8SvLKI8.png) Une potentielle limitation de cette imagerie qu'on trouve assez souvent: la resolution spatiale faible $\to$ certains objets ne sont pas completement resolus On mesure des combinaisons en fonction des spectres des elements constituant la scene. ![](https://i.imgur.com/x27cRnA.png) On souhaite des echantillons en reflectance, on a une conversion a faire depuis la radiance. Si on traite une image RGB, chaque pixel est un vecteur avec $3$ composantes. Ici, on a $600$ composantes, c'est une problematique liee a la **grande dimension des donnees**. ## What to mine ? ![](https://i.imgur.com/661vZ4S.png) On peut utiliser une bibliotheque/catalogue de spectres de differents materiaux pour l'*unmixing* On a 2 possibilites de traitement: :::info **Spectral processing** - Information resides in the spectral signature of the pixels - Pixels can be processed independently - Approaches issuing from multivariate statistics and linear algebra - Objects of interest could by sub-pixel size - Analysis done on the full image ::: :::info **Spatial processing** - Information resides in the spatial organization of pixels - Pixels are processed together (analysis done on local parts of the image) - Use image processing tools - Objects of interest are fully resolved ::: # Analysis of the spectral domain ## HSI scene classification ![](https://i.imgur.com/ShIdilo.png) ## Spectral classification ![](https://i.imgur.com/zBlN0se.png) ## High number of features ? :::info **When the dimensionality of the problem is high** - How calssification accuracy depends upon the dimensionality (and amount of training data)? - Computational complexity of designing the classifier ? ::: :::info **Classification accuracy** - Bayes error depends on the number of statistically independant features - Exampe: consider binary classification problem with $p(x\vert \omega_j)\sim\mathcal N(\mu_j,\Sigma_j)$ $(j=1,2)$, when $P(\omega_{1,2})=0.5$: $$ P(e) = \frac{1}{\sqrt{2\pi}}\int_{r/2}^{+\infty}e^{-\frac{u^2}{2}}du $$ with $r^2=(\mu_1-\mu_2)^T\Sigma^{-1}(\mu_1-\mu_2)$ the squared Mahalanobis distance - $P(e)\searrow$ for $r\nearrow$ - In the case of conditionally independent features $\Sigma = \text{diag}(\sigma_1^2,\dots,\sigma_d^2)$ - $r^2 = \sum_{i=1}^d(\frac{\mu_{i,1}-\mu_{i,2}}{\sigma_2})^2$ ::: ![](https://i.imgur.com/XuDF0aF.png) > Il y a des zones ou on a un recouvrement > On peut augmenter la dimensionnalite, rajouter un descripteur > Attention a la malediction de la dimensionnalite - Intuition fails in high dimensions - Curse of dimensionality (Bellman, 1961): many algorithms working fine in low dimensions become intractable when the input is high-dimensional - Generalizing correctly becomes exponentially harder as the dimenonality grows, because a fixed-size training set covers a smaller fraction of the input space - In high dimensional space, the concept of proximity, distance or nearest neighbor may not even be qualitatively meaningful - Similarity measures based on $l_k$ norms loose meaning with respect to $k$ in high dimensions - $l_1$ norm (Manhattan distance metric) is more preferable thant the Euclidean distance metric $(l_2)$ for high dimensional data mining ## HSI in high dimensions :::info **Volume of a hypersphere** - The volume of a hypersphere of radius $r$ in a $p$-dimensional $$ V_s(r)=\frac{r^p\pi^{\frac{p}{2}}}{\Gamma(\frac{p}{2}+1)} $$ - Volume of a hypercube $[-r, r]^p$ $$ V_c(r) = (2r)^p $$ - The fraction of the volume contained in the inscribed hypersphere $$ f_{p_1}=\frac{V_s(a)}{V_c(a)}=\frac{\pi^{\frac{p}{2}}}{2^p\Gamma(\frac{p}{2}+1)} $$ - Fraction of the volume of a thn spherical shell defined by a sphere of radius $r$ inscribede inside a sphere of radius $(r-\varepsilon)$ to the volume of the entire sphere: $$ \begin{aligned} f_{p_2}&=\frac{V_s(r)-V_s(r-\varepsilon)}{V_s(r)}\\ &=\frac{r^p-(r-\varepsilon)^p}{r^p}\\ &= 1-\biggr(1-\frac{\varepsilon}{r}\biggr)^p \end{aligned} $$ ::: ![](https://i.imgur.com/P23OCFO.png) ![](https://i.imgur.com/O0ZMK8k.png) On veut voir le rapport du volume entre une sphere et le carre qui inscrit la sphere. - *Small sample size* Number of samples for *accurate* classification: ![](https://i.imgur.com/twHwV2M.png) > Si on n'a pas assez d'echantillon pour notre estimation, notre estimation ne sera pas robuste - *Curse of dimensionality !* - *Computational complexity* :::info **The blessing of non-uniformity** ![](https://i.imgur.com/R9RJ0Mi.png) - In most application examples are not spread uniformly throughout the instance space, but are concentrated on or near a lower-dimensional manifold - Intrinsic dimensionality of the data might be difficult to estimate in real data ::: ## Dimensionality reduction :::info Dimension reduction aims at representing data in a reduced number of dimensions ::: Reasons: - Easier data analysis - Improved classifcation accuracy - More stable representation - Removal of redundant or irrevelant information - Attempt to discover underlying structure by obtaining a graphical representation :::success Dimensionality reduction is usually obtained by feature selection or extraction ::: ![](https://i.imgur.com/nN4mkYL.png) :::info **Feature selection** keeps only some of the features according to a criterion leading to new subset of features with lower dimensionality $$ x'=[x_1,x_2,x_3,x_4,\dots,x_d]^T\\ x'=A^Tx $$ with $$ A=\begin{pmatrix} \color{red}{1}&0&0&0&\dots&0\\ 0&\color{red}{0}&0&0&\dots&0\\ 0&0&\color{red}{1}&0&\dots&0\\ 0&0&0&\color{red}{0}&\dots&0\\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&0&\dots\color{red}{1} \end{pmatrix} $$ ::: :::info **Feature extraction** transform the data in a space of lower dimensionality with an arbitrary function $f$ $$ x'=f(x)\quad\text{with } f:\mathbb R^d\to\mathbb R^n, n\lt d $$ ::: ## Example: Color composite ![](https://i.imgur.com/z21RXzQ.png) ![](https://i.imgur.com/jd0DOMf.png) The pigment in plant leaves, chlorophyll, strongly absorbs visible light (from $0.4$ to $0.7\mu m$) for use in photosynthesis. The cell structure of the leaves, on the other hand, strongly reflects near-infrared light (from $0.7$ to $1.1\mu m$). The more leaves a plant has, the more these wavelengths of light are affected, respectively. ## Normalized Difference Vegetation Index (NVDI) ![](https://i.imgur.com/kzpop2f.png) :::info $$ \text{NDVI} = \frac{b_{NIR}-b_{RED}}{b_{NIR}+b_{RED}} $$ ![](https://i.imgur.com/ImwgV1M.png) ::: ![](https://i.imgur.com/APZU0xI.png) ### Example ![](https://i.imgur.com/eV8C1Mz.png) ## Exploratory analysis :::info Covariance matrix ![](https://i.imgur.com/zeDiNS1.png) ::: > A partir du moment ou c'est tres correle, on peut reduire les dimensions tout en conservant une partie de l'information *Quelle est la definition de la matrice de covariance ?* :::success C'est ce qui permet de visualiser la dependance des bandes entre elles ::: Sur l'image ci-dessus, les variables globalement entre $80$ et $100$ ont une correlation relativement elevee. :::info Correlation matrix ![](https://i.imgur.com/iDRVQiZ.png) ::: Si on affiche les valeurs de la diagonale de la matrice: ![](https://i.imgur.com/GpObfbs.png) ## Feature extraction Eigen decomposition of the covariance matrix: $$ \Sigma = \phi \Lambda \phi^T $$ with $\Lambda$ the matrix of eigenvalues (values only on the diagonal) and $\phi$ the matrix of eigenvectors ![](https://i.imgur.com/lvqxotA.png) ![](https://i.imgur.com/VCPREDR.png) ## Principal Component Analysis ![](https://i.imgur.com/fME4I2L.png) ![](https://i.imgur.com/OAM98UW.png) # Application ## Denoising ### Test Let us consider the data $X\in\mathbb R^{b\times n}$ with $n$ samples of $b$ bands and centered at the origin. Matrix $\Phi=[\phi_1,\dots,\phi_d]$ is composed of $d\lt b$ eigenvectors extracted from the $n\times n$ covariance matrix $\Sigma$ of the data $X$ Which transformation would you apply to the data for denoising based on the concepts seen so far ? - [ ] $Y=X_{[1:d,:]}$ - [ ] $Y=\Sigma X$ - [ ] $Y=\Phi X$ - [ ] $Y=\Phi^T X$ - [X] $Y=\Phi\Phi^T X$ - [ ] $Y=\Phi^T\Phi\Phi^T X$ ![](https://i.imgur.com/lUQ1gCG.png) # Spectral Mixture Analysis ## Spectral mixing ![](https://i.imgur.com/1zgTz5y.png) ## Linear mixing model $$ x=\sum_{k=1}^ma_ks_k+e=Sa+e $$ - $x$: Spectrum of a pixel - $a$: Coefficients in the mixture (*abundance*) - $S$: Spectra of the sources of the mixture (*endmembers*) - $e$: Noise Contraintes: - Sum to $1$ $$ \sum_{k=1}^ma_k=1 $$ - Non negativity $$ \begin{aligned} a_g\ge 0\\ S_{k,\lambda}\ge 0 \end{aligned} \quad \forall k $$ ## Geometrical interpretation ![](https://i.imgur.com/iPlAWbX.png) On a un cas tres simple: $$ \begin{cases} x = a_1s_1 + a_2s_2\\ a_1+a_2 = 1 \end{cases} $$ D'un point de vue representation, si on considere les vecteurs $s_1$ et $s_2$, toutes les valeurs de $x$ definies par l'equation ci-dessus sont retrouvees dans le segment $s_1\leftrightarrow s_2$ ## Endmember determination technique ![](https://i.imgur.com/459MxnZ.png) Principles: - Endmembers are the vertexes of the simplex $\to$ find extrema when projecting the data on a line - The convex-hull of the data encloses the simplex $\to$ find endmembers such as to maximise the volume ## Abundance - If the endmembers are available: Solve a minimization problem of the form: $$ \hat A = \text{arg}\min_A\Vert X-AS\Vert^2_F\quad \text{s.t. Constraints} $$ - If the endmembers are not available: Use alternating minimization techniques (e.g., Non-negative matrix factorization) ## Hyperspectral in nature ![](https://i.imgur.com/URtI0eY.jpg) ![](https://i.imgur.com/hMi2CGM.png) ![](https://i.imgur.com/ABmySB6.png) :::info **Mantis shrimp visual system** - $12$ different types of color photoreceptors - see in the UV, VIS and NIR spectral domains - $3$ focal points per eye ($6$ in total, we have $2$) - see polarized light (linear vs circular) ::: ## Bonus ![](https://i.imgur.com/YC9grIg.png)