---
title: "ISAT: HSI"
date: 2021-12-10 09:00
categories: [Image S9, ISAT]
tags: [Image, S9, ISAT]
math: true
---
Lien de la [note Hackmd](https://hackmd.io/@lemasymasa/ryJEsce5K)
# Introduction
## Hyperspectral images
Les acquisitions dans le domaine spectral (les bandes) presente un echantillonage beaucoup plus fin.

L'image est en fausse couleur, on a des tenseurs a 3 voies: $x$, $y$ et les bandes spectrales. Sur cette image on a associe 3 bandes au RGB, c'est une reconstruction partielle mais ca permet de visualiser.
C'est des images aeriennes du massif du Mont Blanc.
*Quelle est la variable physique qui nous interesse ?*
:::success
Ici, la variable physique qui nous interesse si on veut faire une analyse continue de la scene est **la reflectance**.
:::
S'il n'y a pas de transmission, la reflectance est directement liee a l'absorbance.
On souhaite avoir des images exploitable, on veut un rapport image/bruit suffisant. On a typiquement un seul capteur qui a un systeme de diffraction optique (prisme, etc.), la lumiere va arriver et etre diffractee et reflechie dans differentes longueurs d'onde.
:::danger
On n'arrive pas a voir un bloc entier tout d'un coup lors d'une acquisition
:::
:::warning
Si on veut 600 bandes, on va devoir faire un compromis sur la resolution spatiale et spectrale.
:::
On va avoir des imageurs qui ont une faible resolution spatiale ($\sim 30m$) mais il y a un 2e capteur associe qui fait l'acquisition d'une bande panchromatique.

On arrive a avoir des informations assez precises sur la reflectance des differents materiaux. On a $\sim 600$ echantillons pour la reflectance.
Des qu'on passe dans l'infrararouge, on a une reflectance plus importante, due a la presence de la **chlorophyle**.
Toutes les bandes sur le "red edge" ($\sim 0.7\mu m$), ou on a la montee raide du spectre de reflectance de la vegetation, qui permet de discriminer certaines especes.
:::success
C'est la **variable physique d'interet** que l'on essaie d'extraire.
:::

### Example

*Quel est l'interet de faire des acquisitions au-dela du domaine visible ?*
Regardons differentes bandes des plantes:


Dans le proche IR:

:::success
On trouve une difference dans la 3e plante (elle est en *plastique*)
:::
## Applications
Dans des contextes pas forcements lie a la teledetection:
- Detection d'hydrocarbure dans l'eau

:::warning
L'huile superposee a de l'eau a un spectre relativement proche de celui de l'eau
:::
Si on fait le traitement d'une image avec plus d'acquisition:

:::success
On extrait de l'information "*cachee*"
:::
- Monitorage et caracterisation des differents mineraux

- Biomedical
- Detection de tumeurs de la peau

- Astronomie
- Telescope "Muse"

- L'art
- Certaines oeuvres ont des proprietes de transmittance variant selon la longueur d'onde
- C'est possible de detecter des couches invisibles a l'oeil nu

- Controle non-destructif
- Evolution d'un poisson dans le temps
- Detection precoce de la peremption de l'echantillon


## Spectral Unmixing

Une potentielle limitation de cette imagerie qu'on trouve assez souvent: la resolution spatiale faible $\to$ certains objets ne sont pas completement resolus
On mesure des combinaisons en fonction des spectres des elements constituant la scene.

On souhaite des echantillons en reflectance, on a une conversion a faire depuis la radiance.
Si on traite une image RGB, chaque pixel est un vecteur avec $3$ composantes. Ici, on a $600$ composantes, c'est une problematique liee a la **grande dimension des donnees**.
## What to mine ?

On peut utiliser une bibliotheque/catalogue de spectres de differents materiaux pour l'*unmixing*
On a 2 possibilites de traitement:
:::info
**Spectral processing**
- Information resides in the spectral signature of the pixels
- Pixels can be processed independently
- Approaches issuing from multivariate statistics and linear algebra
- Objects of interest could by sub-pixel size
- Analysis done on the full image
:::
:::info
**Spatial processing**
- Information resides in the spatial organization of pixels
- Pixels are processed together (analysis done on local parts of the image)
- Use image processing tools
- Objects of interest are fully resolved
:::
# Analysis of the spectral domain
## HSI scene classification

## Spectral classification

## High number of features ?
:::info
**When the dimensionality of the problem is high**
- How calssification accuracy depends upon the dimensionality (and amount of training data)?
- Computational complexity of designing the classifier ?
:::
:::info
**Classification accuracy**
- Bayes error depends on the number of statistically independant features
- Exampe: consider binary classification problem with $p(x\vert \omega_j)\sim\mathcal N(\mu_j,\Sigma_j)$ $(j=1,2)$, when $P(\omega_{1,2})=0.5$:
$$
P(e) = \frac{1}{\sqrt{2\pi}}\int_{r/2}^{+\infty}e^{-\frac{u^2}{2}}du
$$
with $r^2=(\mu_1-\mu_2)^T\Sigma^{-1}(\mu_1-\mu_2)$ the squared Mahalanobis distance
- $P(e)\searrow$ for $r\nearrow$
- In the case of conditionally independent features $\Sigma = \text{diag}(\sigma_1^2,\dots,\sigma_d^2)$
- $r^2 = \sum_{i=1}^d(\frac{\mu_{i,1}-\mu_{i,2}}{\sigma_2})^2$
:::

> Il y a des zones ou on a un recouvrement
> On peut augmenter la dimensionnalite, rajouter un descripteur
> Attention a la malediction de la dimensionnalite
- Intuition fails in high dimensions
- Curse of dimensionality (Bellman, 1961): many algorithms working fine in low dimensions become intractable when the input is high-dimensional
- Generalizing correctly becomes exponentially harder as the dimenonality grows, because a fixed-size training set covers a smaller fraction of the input space
- In high dimensional space, the concept of proximity, distance or nearest neighbor may not even be qualitatively meaningful
- Similarity measures based on $l_k$ norms loose meaning with respect to $k$ in high dimensions
- $l_1$ norm (Manhattan distance metric) is more preferable thant the Euclidean distance metric $(l_2)$ for high dimensional data mining
## HSI in high dimensions
:::info
**Volume of a hypersphere**
- The volume of a hypersphere of radius $r$ in a $p$-dimensional
$$
V_s(r)=\frac{r^p\pi^{\frac{p}{2}}}{\Gamma(\frac{p}{2}+1)}
$$
- Volume of a hypercube $[-r, r]^p$
$$
V_c(r) = (2r)^p
$$
- The fraction of the volume contained in the inscribed hypersphere
$$
f_{p_1}=\frac{V_s(a)}{V_c(a)}=\frac{\pi^{\frac{p}{2}}}{2^p\Gamma(\frac{p}{2}+1)}
$$
- Fraction of the volume of a thn spherical shell defined by a sphere of radius $r$ inscribede inside a sphere of radius $(r-\varepsilon)$ to the volume of the entire sphere:
$$
\begin{aligned}
f_{p_2}&=\frac{V_s(r)-V_s(r-\varepsilon)}{V_s(r)}\\
&=\frac{r^p-(r-\varepsilon)^p}{r^p}\\
&= 1-\biggr(1-\frac{\varepsilon}{r}\biggr)^p
\end{aligned}
$$
:::


On veut voir le rapport du volume entre une sphere et le carre qui inscrit la sphere.
- *Small sample size* Number of samples for *accurate* classification:

> Si on n'a pas assez d'echantillon pour notre estimation, notre estimation ne sera pas robuste
- *Curse of dimensionality !*
- *Computational complexity*
:::info
**The blessing of non-uniformity**

- In most application examples are not spread uniformly throughout the instance space, but are concentrated on or near a lower-dimensional manifold
- Intrinsic dimensionality of the data might be difficult to estimate in real data
:::
## Dimensionality reduction
:::info
Dimension reduction aims at representing data in a reduced number of dimensions
:::
Reasons:
- Easier data analysis
- Improved classifcation accuracy
- More stable representation
- Removal of redundant or irrevelant information
- Attempt to discover underlying structure by obtaining a graphical representation
:::success
Dimensionality reduction is usually obtained by feature selection or extraction
:::

:::info
**Feature selection** keeps only some of the features according to a criterion leading to new subset of features with lower dimensionality
$$
x'=[x_1,x_2,x_3,x_4,\dots,x_d]^T\\
x'=A^Tx
$$
with
$$
A=\begin{pmatrix}
\color{red}{1}&0&0&0&\dots&0\\
0&\color{red}{0}&0&0&\dots&0\\
0&0&\color{red}{1}&0&\dots&0\\
0&0&0&\color{red}{0}&\dots&0\\
\vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\
0&0&0&0&\dots\color{red}{1}
\end{pmatrix}
$$
:::
:::info
**Feature extraction** transform the data in a space of lower dimensionality with an arbitrary function $f$
$$
x'=f(x)\quad\text{with } f:\mathbb R^d\to\mathbb R^n, n\lt d
$$
:::
## Example: Color composite


The pigment in plant leaves, chlorophyll, strongly absorbs visible light (from $0.4$ to $0.7\mu m$) for use in photosynthesis. The cell structure of the leaves, on the other hand, strongly reflects near-infrared light (from $0.7$ to $1.1\mu m$). The more leaves a plant has, the more these wavelengths of light are affected, respectively.
## Normalized Difference Vegetation Index (NVDI)

:::info
$$
\text{NDVI} = \frac{b_{NIR}-b_{RED}}{b_{NIR}+b_{RED}}
$$

:::

### Example

## Exploratory analysis
:::info
Covariance matrix

:::
> A partir du moment ou c'est tres correle, on peut reduire les dimensions tout en conservant une partie de l'information
*Quelle est la definition de la matrice de covariance ?*
:::success
C'est ce qui permet de visualiser la dependance des bandes entre elles
:::
Sur l'image ci-dessus, les variables globalement entre $80$ et $100$ ont une correlation relativement elevee.
:::info
Correlation matrix

:::
Si on affiche les valeurs de la diagonale de la matrice:

## Feature extraction
Eigen decomposition of the covariance matrix:
$$
\Sigma = \phi \Lambda \phi^T
$$
with $\Lambda$ the matrix of eigenvalues (values only on the diagonal) and $\phi$ the matrix of eigenvectors


## Principal Component Analysis


# Application
## Denoising
### Test
Let us consider the data $X\in\mathbb R^{b\times n}$ with $n$ samples of $b$ bands and centered at the origin. Matrix $\Phi=[\phi_1,\dots,\phi_d]$ is composed of $d\lt b$ eigenvectors extracted from the $n\times n$ covariance matrix $\Sigma$ of the data $X$
Which transformation would you apply to the data for denoising based on the concepts seen so far ?
- [ ] $Y=X_{[1:d,:]}$
- [ ] $Y=\Sigma X$
- [ ] $Y=\Phi X$
- [ ] $Y=\Phi^T X$
- [X] $Y=\Phi\Phi^T X$
- [ ] $Y=\Phi^T\Phi\Phi^T X$

# Spectral Mixture Analysis
## Spectral mixing

## Linear mixing model
$$
x=\sum_{k=1}^ma_ks_k+e=Sa+e
$$
- $x$: Spectrum of a pixel
- $a$: Coefficients in the mixture (*abundance*)
- $S$: Spectra of the sources of the mixture (*endmembers*)
- $e$: Noise
Contraintes:
- Sum to $1$
$$
\sum_{k=1}^ma_k=1
$$
- Non negativity
$$
\begin{aligned}
a_g\ge 0\\
S_{k,\lambda}\ge 0
\end{aligned} \quad \forall k
$$
## Geometrical interpretation

On a un cas tres simple:
$$
\begin{cases}
x = a_1s_1 + a_2s_2\\
a_1+a_2 = 1
\end{cases}
$$
D'un point de vue representation, si on considere les vecteurs $s_1$ et $s_2$, toutes les valeurs de $x$ definies par l'equation ci-dessus sont retrouvees dans le segment $s_1\leftrightarrow s_2$
## Endmember determination technique

Principles:
- Endmembers are the vertexes of the simplex $\to$ find extrema when projecting the data on a line
- The convex-hull of the data encloses the simplex $\to$ find endmembers such as to maximise the volume
## Abundance
- If the endmembers are available: Solve a minimization problem of the form:
$$
\hat A = \text{arg}\min_A\Vert X-AS\Vert^2_F\quad \text{s.t. Constraints}
$$
- If the endmembers are not available: Use alternating minimization techniques (e.g., Non-negative matrix factorization)
## Hyperspectral in nature



:::info
**Mantis shrimp visual system**
- $12$ different types of color photoreceptors
- see in the UV, VIS and NIR spectral domains
- $3$ focal points per eye ($6$ in total, we have $2$)
- see polarized light (linear vs circular)
:::
## Bonus
