--- title: "EPIQUANTI : Qubits" date: 2021-09-28 14:00 categories: [tronc commun S9, EPIQUANTI] tags: [tronc commun, EPIQUANTI, S9] math: true description: Qubits --- Lien de la [note Hackmd](https://hackmd.io/@lemasymasa/SkrIHYx4t) # Grotrian diagram ![](https://i.imgur.com/WAzXA3j.png) ## Quantum vacuum fluctuations According to quantum field theory and Heisenberg principle, vacuum contains harmonic oscillators with zero-point energy $$ E=\frac{1}{2}hv\\ \Delta E\cdot\Delta t\ge\frac{h}{2} $$ with electrons/positrons spontaneously cretaed and annilihating, creating photons ![](https://i.imgur.com/iNILAUH.png) > Feynmann diagram :::info **Lamb shift** *(1947)* Energy shift observed between 2 levels hyperfine structure in hydrogen atom, explained by quantum vacuum fluctations impacting electrons ::: Casimir effect (1997) ![](https://i.imgur.com/PB376OX.png) # Comparing classical and quantum physics ![](https://i.imgur.com/ixKLeYe.png) # Quantum myths: History *Einstein was wrong about quantum mechanics* > He was a key founder of quantum physics with the photoeletric effect explanation and many other works; he asked the right questions about entanglement in 1935 which are still debated *Werner Heisenberg created his indeterminacy inequality* > It was created by Earle Hesse Kennard in 1927 and Hermann Weyl in 1928 *Erwin Schrodinger's cat is both dead and alive* > He wanted to explain that the wave-particle duality didn't work at macro scale, thus the cat can't be both dead and alive. End of story, but I can elaborate. It's a matter of uncertainty origin. *Richard Feynmann invented the concept of quantum computing* > He imagined in 1981 the concept of quantum simulation of quantum physics phenomenon but, before, Yuri Manin invented in 1980 the concept of gate based quantum computing. *Young's slit experiment was done with electrons in 1927* > Peux pas lire ptdr ## What happened during WWII ? > La bombe atomique La physique atomique est un champ different de la physique quantique mais on peut expliquer la desintegration du noyau d'uranium par la physique quantique. :::warning Les gens faisant de la physique quantique sont passes sur la physique nucleaire, il y a eu un trou dans la phyisque quantique ::: ## Post-WWII - 1946-1952: Felix Bloc - Sphere ![](https://i.imgur.com/dzmvu3W.png) - 1947-1956: William Shockley John Bardeen Walter Brattain - Transistors - 1957: John Bardeen, Leon Cooper, John RObert Schrieffer - Superconductivity - 1953 - 1960: Gordon Gould, Theodore Maiman, Nikolay Basov - 1964: Alexander Prokhorov - 1964: Charles Hard Townes - 1962-1973: Brian Josephson - Josephson effect - 1964: John Stewart Bell - Bell inaqualities and test - 1970: Dieter Zeh - Quantum decoherence - 1980: Yuri Manin - Quantum computing - 1980: Tommaso Toffoli - Toffoli gate - 1981: Richard Feynman - Quantum simulator - 1982: Alain Aspect ## $1^{st}$ and $2^{nd}$ quantum revolutions :::info Manipulating groups of quantum particles ($1947-\*$) > Photons, electrons and atoms interactions ::: - Transistors - Lasers - GPS - Photovoltaic cell - Atom clocks - Medical imaging - Digital photography - LCD TV quantum dots :::info Manipulating superposition and entanglement and/or individual particles ($1982-\*$) ::: - Quantum computing - Quantum telecommunications - Quantum cryptography - Quantum sensing ## Second quantum revolution - 1991: Anton Zellinger - Neutrons duality - 1992: Arthur Ekert - QKD - 1993: Umesh Vazirani - Quantum complexity - 1992: - Serge Haroche - Quantum decoherence - Juan Cirac and Peter Zoller - Trapped ions qubits - Edward Farhi - Adiabatic quantum computing - David DiVincenzo - Criterium - 1997: Nicolas Gisin - Non locality - 1997 & 2002: Daniel Esteve - Superconducting qubits - 2001: Hans Briegel - MBQC - 2011: John Preskill - Quantum supremacy concept - 2012: D-Wave One - First quantum annealing commercial computer - 2016: IBM Q - First cloud based quantum computer # Quantum sensing > On n'en parlera quasiment pas du tout - lasers and frequency combs - clocks - Spectrographs - ultra-sound mikes - entengled photons - radars - ultra-sensing imaging - cold atoms ## Capteurs quantiques - Nami - Entanglement - iXblue # Classical computing state of the art and limitations ## Moore's law: *dead or alive ?* C'est un papier ecrit par Gordon Moore. Il fait en observation empirique: :::danger Faire croitre le nombre de transistors dans une puce de maniere exonentielle ![](https://i.imgur.com/SpOyygL.png) ::: > Ce n'est pas une loi mathematique ou physique Cela mettait la pression sur les constructeurs comme Intel. :::warning Elle est applicable aux: - processeurs - supercalculateurs - espaces de stockage ::: *En quoi la loi de Moore s'est arretee ?* > La puissance d'horloges n'a pas augmente exponentiellement depuis plus de 15 ans :::success C'est lie a la fin de *l'echelle de Dennard* en 2006 ![](https://i.imgur.com/uD4xsE1.png) ::: L'energie utilisee a explose. *Pourquoi ?* > A cause de fuites sur les transistors :::warning Ca a fini sur le **dark silicon** ::: A cause de ce mecanisme, on ne peut pas utiliser toute la surface d'un processeur de serveur sinon il va fondre. *Comment on fait pour tout utiliser en entier ?* > Avec un isolant ? > Avec un refroidissement ? ## CMOS technical challenges - Extreme ultra violet (EUV) - for $\le10$ nm density - Heat barrier - processor clocks # Quantum computing # Promis and use cases Probleme intractable: probleme dont le temps de calcul va augmenter de maniere exponentielle avec sa taille. :::info **Promesse** Certains problemes intractables vont etre solvable dans un temps humainement raisonable. ::: - Transports et logisitiques - Healthcare - Energy and materials - Finance and insurance - Defense # Difference Bits and Qubits ![](https://i.imgur.com/dEY5zW9.jpg) ## From quantum physics to qubits - wave function - describes particles properties - probabilities - quantization - discrete levels of wave functions, like energy, polarity, spin - superposition - linear combination of quantized states - entanglement - quantum objects correlated states, consequence of linear superposition of multiple quantum objects :::warning wave function & quantization: 2 levels of quantum objects ::: ## From computing to measurement - Quantum gates - actions on qubits and their superposed states ![](https://i.imgur.com/3NhuTgA.png) Computational basis state vector: $$ \begin{matrix} \text{complex amplitude} &\text{of all combinations of } 0 \text{ and } 1\\ \begin{bmatrix} \alpha_1\\ \vdots\\ \alpha_2N \end{bmatrix} &\begin{matrix} \vert 00\dots00\rangle\\ \vdots\\ \vert 10\dots01\rangle\\ \vdots\\ \vert 11\dots11\rangle \end{matrix} \end{matrix} $$ - $N$ qubits registers - information in $2^N$ superposed state :::danger Qubits can't be independently copied ::: $$ \sum_{i=1}^{2^N}\alpha_i^2=1 $$ handles $2^{N+1}-1$ real numbers - measurement - Ends superposition and entanglement - outputs - $N$ probabilistic classical bits - computing - has to be run many times and results average ## Adressing the noise challenge - decoherence - progressively ends superposition and entanglement - coherence times between $100\mu s$ and a couple seconds - errors - significant during computing - $0.1\%$ to $8\%$ error rates per gate and for qubits readouts - erros correction - requires a very large number of additional qubits - $1-100$ to $1-10000$ ratio between logical and physical qubits - scalability challenges - aulity qubits, cabling, control electronics, cryogenics abd energetics engineering :::success Distributed quantum computing ? ::: ## Complex numbers and phase - $r$: amplitude, modulus, norm - $\theta$: phase angle Euler formula: $$ e^{i\theta}=\cos\theta+\sin\theta $$ Phase angles add up ## qubit Bloch sphere representation ![](https://i.imgur.com/Wh71oh4.png) :::danger Opposite vectors in sphere are mathematically orthogonal ::: $\alpha$ and $\beta$ are complex numbers altitudes: $$ \vert\Psi\rangle=\alpha\vert0\rangle+\beta\vert1\rangle $$ Probabilities and Born normalization constraint: $$ \alpha+\beta=1 $$ Using polar coordinates $\theta$ and $\phi$ and no global phase: $$ \vert\Psi\rangle=\cos\frac{\theta}{2}\vert0\rangle+\sin\frac{\theta}{2}e^{i\phi}\vert1\rangle $$ Euler formula: $$ e^{i\phi}=\cos\phi+i\sin\phi $$ Alternate "symetric" version with a global phase of $e^{-\frac{i\phi}{2}}$ $$ \vert\Psi\rangle=\cos\frac{\theta}{2}e^{\frac{-i\phi}{2}}\vert0\rangle+\sin\frac{\theta}{2}e^{\frac{i\phi}{2}}\vert1\rangle $$ The global phase doen't change the probabilities $\vert\alpha\vert^2$ and $\vert\beta\vert^2$ for measurement ## Other representations Poincare's sphere: ![](https://i.imgur.com/i80h3wU.png) # Linear algebra 101 $$ f(\lambda) $$ Vectors Dirac notation: $$ \vert\Psi\rangle = \begin{bmatrix}\alpha \\ \beta\end{bmatrix} \quad\Psi\text{ ket}\\ \bar\alpha =\alpha*\quad\langle\Psi\vert=[\bar\alpha,\bar\beta]\quad\psi\text{ bra} $$ Bra-ket: $$ \langle\Psi_1\vert\Psi_2\rangle=[\bar\alpha_1,\beta_1]\times\begin{bmatrix}\alpha_2 \\ \beta_2\end{bmatrix} $$ ## How to read that ? $$ \langle\Psi\vert A\vert\phi\rangle $$ Average valye in $\Psi$ of the value $$ A^{✞}=(A^T)* \underbrace{A^*}_{\text{matrix conjugate}}+\overbrace{A^T}^{\text{matrix transpose}}\Rightarrow \begin{bmatrix}a &b \\ c&d \end{bmatrix}^✞ $$ $$ \vert\Psi\rangle = \bigotimes_{n=1}^N\vert i\rangle $$