Lien de la note Hackmd
Grotrian diagram
Image Not Showing
Possible Reasons
The image file may be corrupted The server hosting the image is unavailable The image path is incorrect The image format is not supported
Learn More →
Quantum vacuum fluctuations According to quantum field theory and Heisenberg principle, vacuum contains harmonic oscillators with zero-point energy
with electrons/positrons spontaneously cretaed and annilihating, creating photons
Image Not Showing
Possible Reasons
The image file may be corrupted The server hosting the image is unavailable The image path is incorrect The image format is not supported
Learn More →
Feynmann diagram
Lamb shift (1947)
Energy shift observed between 2 levels hyperfine structure in hydrogen atom, explained by quantum vacuum fluctations impacting electrons
Casimir effect (1997)
Image Not Showing
Possible Reasons
The image file may be corrupted The server hosting the image is unavailable The image path is incorrect The image format is not supported
Learn More →
Comparing classical and quantum physics
Image Not Showing
Possible Reasons
The image file may be corrupted The server hosting the image is unavailable The image path is incorrect The image format is not supported
Learn More →
Quantum myths: History Einstein was wrong about quantum mechanics
He was a key founder of quantum physics with the photoeletric effect explanation and many other works; he asked the right questions about entanglement in 1935 which are still debated
Werner Heisenberg created his indeterminacy inequality
It was created by Earle Hesse Kennard in 1927 and Hermann Weyl in 1928
Erwin Schrodinger's cat is both dead and alive
He wanted to explain that the wave-particle duality didn't work at macro scale, thus the cat can't be both dead and alive. End of story, but I can elaborate. It's a matter of uncertainty origin.
Richard Feynmann invented the concept of quantum computing
He imagined in 1981 the concept of quantum simulation of quantum physics phenomenon but, before, Yuri Manin invented in 1980 the concept of gate based quantum computing.
Young's slit experiment was done with electrons in 1927
Peux pas lire ptdr
What happened during WWII ?
La bombe atomique
La physique atomique est un champ different de la physique quantique mais on peut expliquer la desintegration du noyau d'uranium par la physique quantique.
Les gens faisant de la physique quantique sont passes sur la physique nucleaire, il y a eu un trou dans la phyisque quantique
Post-WWII
1946-1952: Felix Bloc
Sphere
Image Not Showing
Possible Reasons
The image file may be corrupted The server hosting the image is unavailable The image path is incorrect The image format is not supported
Learn More →
1947-1956: William Shockley John Bardeen Walter Brattain
1957: John Bardeen, Leon Cooper, John RObert Schrieffer
1953
1960: Gordon Gould, Theodore Maiman, Nikolay Basov
1964: Alexander Prokhorov
1964: Charles Hard Townes
1962-1973: Brian Josephson
1964: John Stewart Bell
Bell inaqualities and test
1970: Dieter Zeh
1980: Yuri Manin
1980: Tommaso Toffoli
1981: Richard Feynman
1982: Alain Aspect
and
quantum revolutions
Manipulating groups of quantum particles (
)
Photons, electrons and atoms interactions
Transistors
Lasers
GPS
Photovoltaic cell
Atom clocks
Medical imaging
Digital photography
LCD TV quantum dots
Manipulating superposition and entanglement and/or individual particles (
)
Quantum computing
Quantum telecommunications
Quantum cryptography
Quantum sensing
Second quantum revolution
1991: Anton Zellinger
1992: Arthur Ekert
1993: Umesh Vazirani
1992:
Serge Haroche
Juan Cirac and Peter Zoller
Edward Farhi
Adiabatic quantum computing
David DiVincenzo
1997: Nicolas Gisin
1997 & 2002: Daniel Esteve
2001: Hans Briegel
2011: John Preskill
Quantum supremacy concept
2012: D-Wave One
First quantum annealing commercial computer
2016: IBM Q
First cloud based quantum computer
Quantum sensing
On n'en parlera quasiment pas du tout
lasers and frequency combs
clocks
Spectrographs
ultra-sound mikes
entengled photons
radars
ultra-sensing imaging
cold atoms
Capteurs quantiques Classical computing state of the art and limitations Moore's law: dead or alive ? C'est un papier ecrit par Gordon Moore. Il fait en observation empirique:
Faire croitre le nombre de transistors dans une puce de maniere exonentielle
Image Not Showing
Possible Reasons
The image file may be corrupted The server hosting the image is unavailable The image path is incorrect The image format is not supported
Learn More →
Ce n'est pas une loi mathematique ou physique
Cela mettait la pression sur les constructeurs comme Intel.
Elle est applicable aux:
processeurs
supercalculateurs
espaces de stockage
En quoi la loi de Moore s'est arretee ?
La puissance d'horloges n'a pas augmente exponentiellement depuis plus de 15 ans
C'est lie a la fin de l'echelle de Dennard en 2006
L'energie utilisee a explose.
Pourquoi ?
A cause de fuites sur les transistors
Ca a fini sur le dark silicon
A cause de ce mecanisme, on ne peut pas utiliser toute la surface d'un processeur de serveur sinon il va fondre.
Comment on fait pour tout utiliser en entier ?
Avec un isolant ?
Avec un refroidissement ?
CMOS technical challenges
Extreme ultra violet (EUV)
Heat barrier
Quantum computing Promis and use cases Probleme intractable: probleme dont le temps de calcul va augmenter de maniere exponentielle avec sa taille.
Promesse
Certains problemes intractables vont etre solvable dans un temps humainement raisonable.
Transports et logisitiques
Healthcare
Energy and materials
Finance and insurance
Defense
Difference Bits and Qubits
From quantum physics to qubits
wave function
describes particles properties
probabilities
quantization
discrete levels of wave functions, like energy, polarity, spin
superposition
linear combination of quantized states
entanglement
quantum objects correlated states, consequence of linear superposition of multiple quantum objects
wave function & quantization: 2 levels of quantum objects
From computing to measurement
Quantum gates
actions on qubits and their superposed states
Computational basis state vector:
qubits registers
information in
superposed state
Qubits can't be independently copied
handles
real numbers
measurement
Ends superposition and entanglement
outputs
probabilistic classical bits
computing
has to be run many times and results average
Adressing the noise challenge
decoherence
progressively ends superposition and entanglement
coherence times between
and a couple seconds
errors
significant during computing
to
error rates per gate and for qubits readouts
erros correction
requires a very large number of additional qubits
to
ratio between logical and physical qubits
scalability challenges
aulity qubits, cabling, control electronics, cryogenics abd energetics engineering
Distributed quantum computing ?
Complex numbers and phase
: amplitude, modulus, norm
: phase angle
Euler formula:
Phase angles add up
qubit Bloch sphere representation
Opposite vectors in sphere are mathematically orthogonal
and
are complex numbers altitudes:
Probabilities and Born normalization constraint:
Using polar coordinates
and
and no global phase:
Euler formula:
Alternate "symetric" version with a global phase of
The global phase doen't change the probabilities
and
for measurement
Other representations Poincare's sphere:
Linear algebra 101
Vectors Dirac notation:
Bra-ket:
How to read that ?
Average valye in
of the value