where is the domain of all pixels in and a positive number
When , the above error is called mean absolute difference (MAD) and when Mean Squared Error (MSE)
The error image is usually called displaced frame difference (DFD) image
When is optimal ()
Prenons un cas plus simple
It is equivalent to minimize:
This solution verifies when
We can add a penalty term in our equation to enforce the smoothness of our vector field (i.e. must vary smoothly)
We want to minimize:
with the weighting coefficient.
We have to regularize but not too much (to avoid over-blurring)
Minimzation methods
On va surtout regarder la methode exhaustive
La methode de gradient
La methode de Newton-Raphson
Avec la descente de gradient et le probleme de dimensionnalite, on tombe souvent sur des minimums locaux et non globaux
One important search strategy is to use a multi-resolution representation of the motion field and conduct the search in a hierarchical manner
The basic idea is to first search the motion parameters in a coarse resolution, propagate this solution into a finer resolution, and then refine the solution in the finer resolution
It can combat the slowness of exhaustive search methods
Regularization
Block matching algorithm (BMA)
Les blocs peuvent etre de forme polygonale
On prend en pratique des carres
On suppose qu'on fait de la translation
The Exhaustive Search Block Matching Algorithm (EBMA)
Under the block-wise translation model
Then the error can be written:
We can estimate the MV for each block individually
Deformable block matching algorithm
Le deplacement au bloc de est une somme ponderee des deplacements en 4 coins
Node-based motion representation
Nodal MVs vs Polynomial coefficients
Nodal
Stabilite
Motion estimation using node-based model
where:
Mesh-based motion estimation
Dans le cas des blocs: estime independants et deformes
Mesh: maillage sur l'image et on se permet de les deplacer en meme temps
Tout est corrole
Contrainte a connaitre: on ne veut pas que nos 2 carres s'inversent
On a souvent des discontinuetes au niveau des edges
Plus on augmente le nombre de noeuds, plus on a une estimation precise
Mais la puissance de calcul explose
Global motion estimation
Plusieurs methodes existent
Est-ce qu'on est dans le cadre ou pas d'avoir uniquement la camera qui bouge ?
Au foot et tennis, une grande partie du decor est stable
Region-based motion estimation
Est-ce qu'on separe en region ou on estime le mouvement ?
3 approches possibles
Multi-resolution motion estimation
Various ME approaches can be reduced to solving an error minimization problem
Major difficulties
Many local minima in the gradient-descent case
Not easy to reach the global minimum
Computation high
Pyramide laplacienne: on decompose l'image en bandes de frequence