{%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} # Find the spectral decomposition ## Problem Let $$ A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}. $$ Find the spectral decomposition of $A$. ## Thought The spectral decomposition of $A$ is a way to write $A$ as $$ A = \sum_{j = 1}^q \mu_j P_j $$ such that - $P_i^2 = P_i$ for any $i$, - $P_iP_j = O$ for any $i$ and $j$, and - $\sum_{j=1}^q P_j = I_n$. Intuitively, $P_j$'s are projection matrices whose ranges are orthogonal to each other and span the whole space. In practice, we may first find the eigenvalues $\lambda_1, \ldots, \lambda_n$ and an orthonormal basis $\{\bu_1, \ldots, \bu_n\}$ of $\mathbb{R}^n$. Then $$ \begin{aligned} A &= \lambda_1\bu_1\bu_1\trans + \cdots + \lambda_n\bu_n\bu_n\trans \\ &= \mu_1P_1 + \cdots + \mu_qP_q, \end{aligned} $$ where $\mu_1, \ldots, \mu_q$ are the distinct eigenvalues of $A$ and $P_j$ is the sum of $\bu_i\bu_i\trans$ for all $\lambda_i = \mu_j$. ## Sample answer According to [Find an orthonormal basis composed of eigenvectors](https://hackmd.io/@jephianlin/rJSU_qwm0), we already have $\lambda_1 = 2$, $\lambda_2 = -2$, $\lambda_3 = \lambda_4 = 0$. Thus, we may set $\mu_1 = 2$, $\mu_2 = -2$ and $\mu_3 = 0$ with $q = 3$. The corresponding eigenvectors are $\bu_1$, $\bu_2$, $\bu_3$, and $\bu_4$. As $\bu_3$ and $\bu_4$ both correspond to the eigenvalue $\mu_3 = 0$, we will add them together to form a projection matrix onto $\ker(A - 0I)$. In summary, we have $$ \begin{aligned} A &= \lambda_1\bu_1\bu_1\trans + \lambda_2\bu_2\bu_2\trans + \lambda_3\bu_3\bu_3\trans + \lambda_4\bu_4\bu_4\trans \\ &= \mu_1\bu_1\bu_1\trans + \mu_2\bu_2\bu_2\trans + \lambda_3(\bu_3\bu_3\trans + \bu_4\bu_4\trans) \\ &= 2P_1 + (-2)P_2 + 0P_3, \end{aligned} $$ where $$ P_1 = \frac{1}{4}\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ \end{bmatrix},\ P_2 = \frac{1}{4}\begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & 1 & -1 & -1 \\ -1 & -1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ \end{bmatrix}, $$ and $$ P_3 = \frac{1}{2}\begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}, $$ which is the spectral decomposition of $A$. *This note can be found at Course website > Learning resources.*