{%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} $\newcommand{\proj}{\operatorname{proj}}$ # Least squares problem ## Problem Let $$ A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} \text{ and } \bb = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}. $$ Find $\bx\in\mathbb{R}^2$ such that $\|A\bx - \bb\|$ is minimized. ## Thought Givne any $m\times n$ matrix $A$, we know $$ \Col(A) = \{A\bx: \bx\in\mathbb{R}^n\} $$ is the set of all possible $A\bx$. Let $V = \Col(A)$. The projection $\bw = \proj_V(\bb)$ is the unique point on $V$ with the shortest distance to $\bb$. Thus, we may solve $A\bx = \bw$ instead. By the projection formula, we have $$ A\bx = \bw = A(A\trans A)^{-1}A\trans \bb, $$ so we may choose $\bx = (A\trans A)^{-1}A\trans\bb$. ## Sample answer The projection of $\bb$ onto the column space $\Col(A)$ is $\bw = (A\trans A)^{-1}A\trans \bb$. Since $A\bx = \bb$ has no solution, we solve $A\bx = \bw$ instead, which means $\bx = (A\trans A)^{-1}A\trans \bb$. The rest is the computation. Now we have $$ \begin{aligned} \bx &= (A\trans A)^{-1}A\trans \bb \\ &= \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix} \\ &= \begin{bmatrix} 0.5 \\ 0.4 \end{bmatrix}. \end{aligned} $$ We could try that $$ A\bx = \begin{bmatrix} 0.9 \\ 1.3 \\ 1.7 \\ 2.1 \end{bmatrix} $$ and $\|A\bx - \bb\|^2 = 0.1^2 + 0.3^2 + 0.3^2 + 0.1^2 = 0.2$, which seems to be a promising answer. *This note can be found at Course website > Learning resources.*