{%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} # Quadratic curve ## Problem Consider the equation $5x^2 - 2xy + 5y^2 = 1$. Observe the equation by the basis $\beta = \{\bu_1, \bu_2\}$ such that every point can be written as $p\bu_1 + q\bu_2$, where $$ \bu_1 = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } \bu_2 = \frac{1}{\sqrt{2}}\begin{bmatrix} -1 \\ 1 \end{bmatrix}. $$ What is the equation in terms of $p$ and $q$? ## Thought We will convert the equation into a matrix form, called the quadratic form, and then observe the matrix by $\beta$. By direct computation, we have $$ ax^2 + bxy + cy^2 = 1 $$ is equivalent to $$ \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 1. $$ Thus, the given equation can be written as $$ \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 5 & -1 \\ -1 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 1, $$ where the matrix at the center is denoted by $A$. Naively, the answer is the equation given by $$ \begin{bmatrix} p & q \end{bmatrix} [f_A]_\beta^\beta \begin{bmatrix} p \\ q \end{bmatrix} = 1. $$ Here we provide a bit more details. For any point in $\mathbb{R}^2$, it can be represented by $$ x\be_1 + y\be_2 = p\bu_1 + q\bu_2, $$ where $\mathcal{E}_2 = \{\be_1, \be_2\}$ is the standard basis. Naturally, we have the relations $$ [\idmap]_{\mathcal{E}_2}^\beta \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} p \\ q \end{bmatrix} \text{ and } [\idmap]_\beta^{\mathcal{E}_2} \begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}. $$ Note that the given basis is orthonormal, so $[\idmap]_\beta^{\mathcal{E}_2}$ is an orthogonal matrix, which means $[\idmap]_{\mathcal{E}_2}^\beta = ([\idmap]_\beta^{\mathcal{E}_2})^{-1} = ([\idmap]_\beta^{\mathcal{E}_2})\trans$. By replacing $x$ and $y$ by $p$ and $q$, we have $$ \begin{bmatrix} x & y \end{bmatrix} A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} p & q \end{bmatrix} ([\idmap]_\beta^{\mathcal{E}_2})\trans A [\idmap]_\beta^{\mathcal{E}_2} \begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} p & q \end{bmatrix} [f_A]_\beta^\beta \begin{bmatrix} p \\ q \end{bmatrix}, $$ leading to the desired result. ## Sample answer We may write the equation $5x^2 - 2xy + 5y^2 = 1$ as $$ \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 5 & -1 \\ -1 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 1, $$ and denote the central matrix as $A$. By direct computation, we have $$ \begin{aligned} f_A(\bu_1) &= \begin{bmatrix} 5 & -1 \\ -1 & 5 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{4}{\sqrt{2}} \\ \frac{4}{\sqrt{2}} \end{bmatrix} = 4\bu_1 + 0\bu_2, \\ f_A(\bu_2) &= \begin{bmatrix} 5 & -1 \\ -1 & 5 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} -\frac{6}{\sqrt{2}} \\ \frac{6}{\sqrt{2}} \end{bmatrix} = 0\bu_1 + 6\bu_2. \\ \end{aligned} $$ Consequently, $$ [f_A]_\beta^\beta = \begin{bmatrix} 4 & 0 \\ 0 & 6 \end{bmatrix} $$ and the corresponding equation is $4p^2 + 6q^2 = 1$, which is an equation for an ellipse with semi-major axis of length $\frac{1}{\sqrt{6}}$ and semi-minor axis of length $\frac{1}{2}$. ## Note You may use [desmos](https://www.desmos.com/calculator) to plot the to equations to observe their relation. *This note can be found at Course website > Learning resources.*