{%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} # Characteristic polynomial ## Problem Let $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{bmatrix}. $$ Find the characteristic polynomial $p_A(x)$ of $A$. ## Thought There are several ways to compute $p_A(x) = \det(A - xI)$, including the Laplace expansion and the permutation expansion. They are doable, but it would be easier to compute $p_A(x)$ by the formula $$ p_A(x) = (-x)^n + s_1(-x)^{n-1} + \cdots + s_n, $$ where $$ s_k = \sum_{\substack{\alpha\subseteq [n]\\|\alpha| = k}}\det(A[\alpha]). $$ ## Sample answer For $k = 1$, the set $\alpha$ can be $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$. The corresponding matrices $A[\alpha]$ are $\begin{bmatrix} 1 \end{bmatrix}$, $\begin{bmatrix} 2 \end{bmatrix}$, $\begin{bmatrix} 9 \end{bmatrix}$, $\begin{bmatrix} 64 \end{bmatrix}$ with their determinant $1$, $2$, $9$, $64$, respectively. Therefore, $$ s_1 = \tr(A) = 1 + 2 + 9 + 64 = 76. $$ For $k = 2$, the set $\alpha$ can be $$ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}. $$ The corresponding matrices $A[\alpha]$ are $$ \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 9 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 64 \end{bmatrix}, \begin{bmatrix} 2 & 4 \\ 3 & 9 \end{bmatrix}, \begin{bmatrix} 2 & 8 \\ 4 & 64 \end{bmatrix}, \begin{bmatrix} 9 & 27 \\ 16 & 64 \end{bmatrix} $$ with their determinant $1$, $8$, $63$, $6$, $96$, $144$, respectively. Therefore, $$ s_2 = 1 + 8 + 63 + 6 + 96 + 144 = 318. $$ For $k = 3$, the set $\alpha$ can be $$ \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}. $$ The corresponding matrices $A[\alpha]$ are $$ \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 8 \\ 1 & 4 & 64 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 9 & 27 \\ 1 & 16 & 64 \end{bmatrix}, \begin{bmatrix} 2 & 4 & 8 \\ 3 & 9 & 27 \\ 4 & 16 & 64 \end{bmatrix} $$ with their determinant $2$, $42$, $114$, $48$, respectively. Therefore, $$ s_3 = 2 + 42 + 114 + 48 = 206. $$ For $k = 4$, the only $\alpha$ is $\{1,2,3,4\}$ and $A[\alpha] = A$. Since $A$ is a [Vandermonde matrix](https://en.wikipedia.org/wiki/Vandermonde_matrix), one may easily calculate its determinant $$ s_4 = \det(A) = 12. $$ In summary, the characteristic polynomial is $$ \begin{aligned} p_A(x) &= (-x)^4 + s_1(-x)^3 + s_2(-x)^2 + s_3(-x) + s_4 \\ &= x^4 - 76x^3 + 318x^2 - 206x + 12. \end{aligned} $$ ## Note With Sage, you may run the code below or simply click [here](https://sagecell.sagemath.org/?q=nzefbn) to find the answer. ```python= A = matrix([ [1,1,1,1], [1,2,4,8], [1,3,9,27], [1,4,16,64] ]) n = A.dimensions()[0] show((-1)**n * A.charpoly()) ``` *This note can be found at Course website > Learning resources.*