{%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} # AB and BA have the same nonzero eigenvalues ## Problem Let $A$ and $B$ be $m\times n$ and $n\times m$ matrices, respectively. Show that $AB$ and $BA$ have the same nonzero eigenvalues. ## Thought Note that $AB$ and $BA$ are $m\times m$ and $n\times n$ matrices, respectively. When $m\neq n$, it is impossible for $AB$ and $BA$ to be similar. However, the trick is to show that $$ \begin{bmatrix} AB & O_{m,n} \\ B & O_{n,n} \end{bmatrix} \text{ and } \begin{bmatrix} O_{m,m} & O_{m,n} \\ B & BA \end{bmatrix} $$ are similar. Thus, the eigenvalues of $AB$ and $BA$ are the same, except for the number of zeros. To see this, we use the block row operation $$ \begin{bmatrix} I_m & -A \\ O_{n,m} & I_n \end{bmatrix} \begin{bmatrix} AB & O_{m,n} \\ B & O_{n,n} \end{bmatrix} = \begin{bmatrix} O_{m,m} & O_{m,n} \\ B & O_{n,n} \end{bmatrix}. $$ It is straightforward to find $$ \begin{bmatrix} I_m & -A \\ O_{n,m} & I_n \end{bmatrix}^{-1} = \begin{bmatrix} I_m & A \\ O_{n,m} & I_n \end{bmatrix}. $$ When applying this matrix one the right, it stands for a block column operation. That is, $$ \begin{bmatrix} O_{m,m} & O_{m,n} \\ B & O_{n,n} \end{bmatrix} \begin{bmatrix} I_m & A \\ O_{n,m} & I_n \end{bmatrix} = \begin{bmatrix} O_{m,m} & O_{m,n} \\ B & BA \end{bmatrix}. $$ With these intuition behind the scene, this problem can be solved by a one-line proof. ## Sample answer By direct computation, we have $$ \begin{bmatrix} I_m & -A \\ O_{n,m} & I_n \end{bmatrix} \begin{bmatrix} AB & O_{m,n} \\ B & O_{n,n} \end{bmatrix} \begin{bmatrix} I_m & A \\ O_{n,m} & I_n \end{bmatrix} = \begin{bmatrix} O_{m,m} & O_{m,n} \\ B & BA \end{bmatrix}, $$ so $$ \begin{bmatrix} AB & O_{m,n} \\ B & O_{n,n} \end{bmatrix} \text{ and } \begin{bmatrix} O_{m,m} & O_{m,n} \\ B & BA \end{bmatrix} $$ are similar, and $AB$ and $BA$ have the same nonzero eigenvalues. *This note can be found at Course website > Learning resources.*