{%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %}
# AB and BA have the same nonzero eigenvalues
## Problem
Let $A$ and $B$ be $m\times n$ and $n\times m$ matrices, respectively. Show that $AB$ and $BA$ have the same nonzero eigenvalues.
## Thought
Note that $AB$ and $BA$ are $m\times m$ and $n\times n$ matrices, respectively. When $m\neq n$, it is impossible for $AB$ and $BA$ to be similar. However, the trick is to show that
$$
\begin{bmatrix}
AB & O_{m,n} \\
B & O_{n,n}
\end{bmatrix}
\text{ and }
\begin{bmatrix}
O_{m,m} & O_{m,n} \\
B & BA
\end{bmatrix}
$$
are similar. Thus, the eigenvalues of $AB$ and $BA$ are the same, except for the number of zeros.
To see this, we use the block row operation
$$
\begin{bmatrix}
I_m & -A \\
O_{n,m} & I_n
\end{bmatrix}
\begin{bmatrix}
AB & O_{m,n} \\
B & O_{n,n}
\end{bmatrix} =
\begin{bmatrix}
O_{m,m} & O_{m,n} \\
B & O_{n,n}
\end{bmatrix}.
$$
It is straightforward to find
$$
\begin{bmatrix}
I_m & -A \\
O_{n,m} & I_n
\end{bmatrix}^{-1} =
\begin{bmatrix}
I_m & A \\
O_{n,m} & I_n
\end{bmatrix}.
$$
When applying this matrix one the right, it stands for a block column operation. That is,
$$
\begin{bmatrix}
O_{m,m} & O_{m,n} \\
B & O_{n,n}
\end{bmatrix}
\begin{bmatrix}
I_m & A \\
O_{n,m} & I_n
\end{bmatrix} =
\begin{bmatrix}
O_{m,m} & O_{m,n} \\
B & BA
\end{bmatrix}.
$$
With these intuition behind the scene, this problem can be solved by a one-line proof.
## Sample answer
By direct computation, we have
$$
\begin{bmatrix}
I_m & -A \\
O_{n,m} & I_n
\end{bmatrix}
\begin{bmatrix}
AB & O_{m,n} \\
B & O_{n,n}
\end{bmatrix}
\begin{bmatrix}
I_m & A \\
O_{n,m} & I_n
\end{bmatrix} =
\begin{bmatrix}
O_{m,m} & O_{m,n} \\
B & BA
\end{bmatrix},
$$
so
$$
\begin{bmatrix}
AB & O_{m,n} \\
B & O_{n,n}
\end{bmatrix}
\text{ and }
\begin{bmatrix}
O_{m,m} & O_{m,n} \\
B & BA
\end{bmatrix}
$$
are similar, and $AB$ and $BA$ have the same nonzero eigenvalues.
*This note can be found at Course website > Learning resources.*