date: 2022/6/4
之前整理的wmts&GIS相關連結 https://richardlaiiiii.blogspot.com/2022/04/blog-post.html
date: 2022/6/5
簡單整理以下的問題:
Q1:請問若要開始進行模型的實作,是否要將嘗試過github或一些paper常用的方法(pix2pix、GAN、U-net)都嘗試過?或者在色彩修復這方面,有沒有什麼實作效果較好or較容易實作的模型,除了之前教授所傳的GAN搭配Unet的實作?
A1:你可以用colorizing (colorization) pretrained model當作關鍵詞,可以找到很多案例討論,
例如:https://github.com/moein-shariatnia/Deep-Learning/tree/main/Image Colorization Tutorial
它就直接將程式碼公開(已經使用GAN、U-net模型),就可以複製到Google Colab來修改執行看看。
Q2:請問利用Qtiles所擷取之影像解析度低的問題有解決的方法嗎? 目前看起來似乎QGIS針對.png及.jpg的輸出品質恐怕無法更好。
A2:影像解析度低主要是選取Zoom Level及原始圖資供應單位提供的影像品質所致,與QGIS關係不大。由於QTiles中圖磚(Tile) Width及Height可以加大,因此可以視前項你選擇的模型輸入資料格式,進行調整。
Q3:如果要比較各地區的訓練樣本帶來的影響,這個想法是否可行?意思就是要比較不同地區(可能是台北市、彰化縣…)的黑白影像(訓練用),是否會影響到訓練的成效。
A3:應該說訓練資料中就應該包括城市、鄉村及純自然環境的影像(資料),這樣訓練出來模型才能應用到臺灣各地,可以將不同的地景都正確上色。
大四學生針對臺灣茶園AI判釋的報告簡報連結
data augmentation
中央研究院人社中心地理資訊科學研究專題中心
date: 2022/6/7
https://emilwallner.medium.com/colorize-b-w-photos-with-a-100-line-neural-network-53d9b4449f8d
學了一點numpy跟matplotlib的運用,其實很少啦。
date: 2022/6/9
linux 解壓縮指令
http://note.drx.tw/2008/04/command.html
2022/6/16
認識auto encoder、convolutional auto encoder
2022/6/23
2022/7/1
https://arxiv.org/abs/1603.08511 利用CNN實作上色
翻到以下資源,可能有空會看:
計算機視覺三大國際會議
https://eccv2022.ecva.net/
https://iccv2021.thecvf.com/home
https://cvpr2022.thecvf.com/
Siggraph
ACM siggraph
ACM siggraph Taipei
ICLR
https://iclr.cc/
EX: https://github.com/google-research/google-research/tree/master/coltran (https://paperswithcode.com/method/colorization-transformer)
Deep Koalarization: Image Colorization using CNNs and Inception-ResNet-v2
Kaggle https://www.kaggle.com/ 裡面似乎有蠻多別人寫的code(?
GAN
https://github.com/OvaizAli/Image-Colorization-using-GANs
deepai API
https://deepai.org/machine-learning-model/colorizer
https://github.com/MarkMoHR/Awesome-Image-Colorization
https://wacv2022.thecvf.com/node/83
原文: https://github.com/MarkMoHR/Awesome-Image-Colorization/blob/master/README.md
2.1 Based on color strokes
2.2 Based on reference color image
2.3 Based on color palette
Image Type | Paper | Source | Code/Project Link |
---|---|---|---|
Natural Image | Palette-based Photo Recoloring | SIGGRAPH 2015 | [project] |
Manga | Comicolorization: Semi-Automatic Manga Colorization (also reference based) | SIGGRAPH Asia 2017 | [code] |
Natural Gray-Scale | Coloring with Words: Guiding Image Colorization Through Text-based Palette Generation (also text based) | ECCV 2018 | [code] |
Natural Gray-Scale | Example-Based Colourization Via Dense Encoding Pyramids (also reference based) | Pacific Graphics 2018 | [code] |
Natural Gray-Scale | Interactive Deep Colorization Using Simultaneous Global and Local Inputs (also strokes based) | ICASSP 2019 | |
Scene Sketches](http://sweb.cityu.edu.hk/hongbofu/doc/language-based_sketch_colorization_SA19.pdf) | SIGGRAPH Asia 2019 | [code] [project] | |
Natural Gray-Scale | L-CoDe: Language-based Colorization using Color-object Decoupled Conditions | AAAI 2022 |
Paper | Source | Code/Project Link |
---|---|---|
Deep Edge-Aware Interactive Colorization against Color-Bleeding Effects | ICCV 2021 | [project] [code(metric)] |
Line Art Colorization Based on Explicit Region Segmentation | Pacific Graphics 2021 | [code] |
認識transformer
https://tw.coderbridge.com/series/2ec9cf0af3f74ed99371952f4849ae33/posts/5c495ca5e46e40bc98ff623e87919c9a
https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)
Colorization transformer
https://arxiv.org/abs/2102.04432?context=cs
用Neural Network實作的教學
https://github.com/emilwallner/Coloring-greyscale-images
https://emilwallner.medium.com/colorize-b-w-photos-with-a-100-line-neural-network-53d9b4449f8d
https://medium.com/axinc-ai/colorization-a-machine-learning-model-for-colorizing-black-and-white-images-829e35e4f91c
https://github.com/axinc-ai/ailia-models/tree/master/image_manipulation/colorization
以VGG(https://ithelp.ithome.com.tw/articles/10192162)實作的上色模型
https://github.com/richzhang/colorization/blob/master/colorizers/siggraph17.py
https://github.com/junyanz/interactive-deep-colorization
https://github.com/topics/automatic-colorization
https://github.com/topics/coloring-algorithm
https://algorithmia.com/ Google算法介紹網站
建立 ML學習筆記 (基礎太差:( )
Kaggles的使用教學
https://www.kaggle.com/code/qi4589746/kaggle/notebook
用kaggles的資料庫用CNN實作上色
https://www.kaggle.com/code/adithyakag/image-colorization-cnn
https://colab.research.google.com/drive/1aZV3eRFoU5SQG3-e6zClAOQtPBtTSIIf?usp=sharing
Auto encoder的實作
https://www.kaggle.com/code/brsdincer/image-colorization-process-auto-encoder
colab:
https://colab.research.google.com/drive/1fFTXcTq_b0ilBdX_FDrSQcEXzHe6_5Av?usp=sharing
Combining MobileNetV2 and CNN
https://www.kaggle.com/code/liturgy/image-colorization-combining-mobilenetv2-and-cnn
colab:
https://colab.research.google.com/drive/1llkSEp8spgBzbFod-XAEbozXRqHD5rY6?usp=sharing
colorization-using-cnn-and-inception-resnet-v2
https://www.kaggle.com/code/anshul4150/colorization-using-cnn-and-inception-resnet-v2
colab:
https://keras.io/
https://www.tensorflow.org/
https://pytorch.org/
https://leemeng.tw/deep-learning-resources.html
keras、tensorflow、pytorch的官網,上面蠻多不錯的專案範例可以實作
看資訊社學長的簡報,熟悉數學、pytorch、keras等基礎知識
https://slides.com/liusean/machine-learning
Machine Learning resources
https://hackmd.io/@DanielChen/r1SkwBBA-?type=view
找論文不錯的網站 & keras的中文文檔
https://keras.io/zh
https://deepai.org/
kera模型架構&程式碼
https://ithelp.ithome.com.tw/articles/10234389?sc=iThelpR
How LSTM works?
https://brohrer.mcknote.com/zh-Hant/how_machine_learning_works/how_rnns_lstm_work.html
kaggles tutorial
https://bit.ly/3zCLVQ4
https://www.kaggle.com/code/alexisbcook/getting-started-with-kaggle/notebook
https://rawpedia.rawtherapee.com/RGB_and_Lab
Kaggles
colorization-using-cnn-and-inception-resnet-v2
https://colab.research.google.com/drive/1EzXGw0fXAa9klZScA0Cjli8OYnSyBJEm?usp=sharing
結果請看colab或以下照片
kaggle.com/code/rajeevctrl/imagecolorization-labcolorspace-fastai/notebook
了解基本matplotlib的語法 (機器學習中紀錄loss、acc會用到)
https://blog.happycoding.today/pythonbeginner-ep8/
Real-Time User-Guided Image Colorization with Learned Deep Priors
https://arxiv.org/abs/1705.02999
Colorization using deep learning
https://medium.datadriveninvestor.com/coloring-black-white-images-using-deep-learning-984e6f4ddf14
雖然裡面的程式無法執行 QwQ,但有再介紹將圖片轉換為LAB後的訓練過程 (?
Richzhang的github page,上面似乎有關於電腦視覺更詳細的介紹 (?
http://richzhang.github.io/colorization/
Deep Koalarization: Image Colorization using CNNs and Inception-ResNet-v2 (Code&Paper)
https://paperswithcode.com/paper/deep-koalarization-image-colorization-using
還沒找到這個project的相關論文 QwQ
https://github.com/mlhubber/colorize
測試結果見下方的colab:
https://colab.research.google.com/drive/1BlGY7m2DYHswEbaOYl1OFVuv7kH5iT7I?usp=sharing
PySimpleGUI photo colorizer
https://github.com/PySimpleGUI/PySimpleGUI-Photo-Colorizer
稍微讀過以下的資訊:
Floydhub: 可以租用雲端GPU的線上工具
https://newtoypia.blogspot.com/2018/04/floydhub.html
The machine learning hub
https://mlhub.readthedocs.io/en/latest/
跑過一些模型,熟習matplotlib的語法
學會利用ngrok搭建伺服器
https://hackmd.io/@expectlai/HJwKMuwRc
CNN、Deep-Exemplar-based-Colorization
https://github.com/msracver/Deep-Exemplar-based-Colorization
有神人實作多種版本如alpha、beta、GAN等version的上色模型
https://github.com/emilwallner/Coloring-greyscale-images
pix2pix實作
https://medium.com/@falconives/day-56-pix2pix-21c7df48922c
U-net實作semantics sementation
https://ithelp.ithome.com.tw/articles/10240314
Colab:
https://colab.research.google.com/drive/1rI6GuEWOu6jpuEvkleBrOQDQ2autXZyu?usp=sharing
實作GAN
https://chih-sheng-huang821.medium.com/pytorch手把手實作-generative-adversarial-network-8adae9a3092b
Colab: https://colab.research.google.com/drive/1KeA9D__qa9UwndT3Y1pvjP9qa7ihAZEV?usp=sharing
廖泫銘教授介紹最近加入GIS專題中心的陳哲安學長(蔡宗翰老師的學生),他目前也都在進行pix2pix、GAN、U-net有關的實驗 (主要應用如semantic segmentation、Style transfer)
之後如果有模型相關的問題,我應該能請教學長他。
Conditional GAN上色的論文
https://arxiv.org/abs/1611.07004
GAN、U-net approach of colorization
https://towardsdatascience.com/colorizing-black-white-images-with-u-net-and-conditional-gan-a-tutorial-81b2df111cd8
The method of displaying a image in python
https://stackoverflow.com/questions/1413540/showing-an-image-from-console-in-python
Neural network implemention
https://emilwallner.medium.com/colorize-b-w-photos-with-a-100-line-neural-network-53d9b4449f8d
複習常見的神經網路&電腦視覺的模型
https://ithelp.ithome.com.tw/users/20112126/ironman/1971
https://richzhang.github.io/InteractiveColorization/
學習Python檔案處理、pillow模組的應用
也寫了簡單將圖片轉為黑白的程式,但pil的convert會將圖轉成典陣圖物件,因此畫質會降低許多 ;-;
只能改成ImageOps
https://techtutorialsx.com/2018/06/02/python-opencv-converting-an-image-to-gray-scale/
https://arxiv.org/abs/2204.02980 不同loss對上色效果的影響
真的該來認真研究論文、code了,也應開始試著用自己的datasets訓練
https://paperswithcode.com/search?q_meta=&q_type=&q=Image+Colorization
Inception Resnet
https://ithelp.ithome.com.tw/articles/10277071
Colorful Image Colorization
To appropriately model the multimodal nature of the problem, we predict a distribution of possible colors for each pixel.Furthermore, we re-weight the loss at training time to emphasize rare colors.
(a)designing an
appropriate objective function that handles the multimodal uncertainty of the
colorization problem and captures a wide diversity of colors.
(b)introducing
a novel framework for testing colorization algorithms, potentially applicable to
other image synthesis tasks.
©setting a new high-water mark on the task by
training on a million color photos.
除了看論文,也寄gmail與學長討論,之後可能會約些時間進行實體會面。
https://arxiv.org/abs/1803.05400v5 中有提及結合CNN的GAN: DCGAN (Deconvolutional GAN)
https://www.tensorflow.org/tutorials/generative/dcgan
之後有空可以看
kera GAN 手寫數字生成
https://ithelp.ithome.com.tw/articles/10208478
ML的技巧: Batch normalization
https://ithelp.ithome.com.tw/articles/10204106
Instance-aware Colorization
https://arxiv.org/abs/2005.10825v1 (跑不動的Colab: https://github.com/ericsujw/InstColorization/blob/master/README_TRAIN.md )
下方為tensowflow的實現(利用U-net)、展示
https://github.com/ariG23498/instance-aware-colorization-TF
keras model的存檔,這樣可不用重新訓練模型
https://ithelp.ithome.com.tw/articles/10191627
利用Conditional GAN實現圖像翻譯的paper集合,conditional GAN的介紹可以看 https://www.hmoonotes.org/2020/08/conditional-gan.html
https://paperswithcode.com/paper/image-to-image-translation-with-conditional
Modelzoo: 收集許多ML框架、paper的網站,雖然可能不大有用,但先記下來。
陳哲安學長上週的報告,包含style transfer (cycleGAN、pix2pix)和semantic segmentation的內容,
https://docs.google.com/presentation/d/1_t9j1h4OkvQXbSVMq4vVfFNTmUvesG0i/edit?usp=sharing&ouid=116385839922469449708&rtpof=true&sd=true
建議
可能之後在挑選模型盡量選擇有訓練腳本的論文,否則要複製論文中的模型需要花相當多時間,結果也不一定好。
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix (CycleGAN、pix2pix)
https://github.com/taesungp/contrastive-unpaired-translation (CUT) 也是使用他寫好的腳本去訓練自定義的資料集、CUT簡介、CycleGAN簡介
稍微整理一下CycleGAN跟CUT的內容吧:
一些整理
Learning Representations for Automatic Colorization
https://arxiv.org/abs/1603.06668v3
Point-interactive image colorization
https://paperswithcode.com/task/point-interactive-image-colorization
Mask R-CNN (Fast R-CNN的一個分支)
https://arxiv.org/abs/1703.06870
https://github.com/Time0o/colorful-colorization
https://ithelp.ithome.com.tw/articles/10262541
Python argparse模組的介紹與教學
https://haosquare.com/python-argparse/
Python 實用標準函式庫 argparse
https://dboyliao.medium.com/python-超好用標準函式庫-argparse-4eab2e9dcc69
向中研院申請到GPU,學會Wireguard VPN、PuTTy、remote-ssh等軟體的使用。
相關連結:
Putty的基礎教學
https://its.sinica.edu.tw/posts/117169
VScode遠端連上ssh
https://code.visualstudio.com/docs/remote/ssh
Wireguard安裝
https://www.wireguard.com/
Putty安裝
https://putty.org/
IP: 140.109.161.10
User: laiyuchi
Passwd: 2021laiyuchi@
Wireguard VPN設定檔: https://drive.google.com/file/d/1adjw2Oer5KO6NhjDdnomzg517hNV0QCy/view?usp=sharing
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/CycleGAN
CycleGAN inage colorization
https://github.com/ArkaJU/Image-Colorization-CycleGAN
Style GAN
https://github.com/NVlabs/stylegan
也許可以用一些style transfer的模型,去進行上色。
https://arxiv.org/abs/2011.11731
Single Image Colorization Via Modified Cyclegan
https://ieeexplore.ieee.org/document/8803677
https://sci-hub.se/
https://sci-hub.se/10.1109/icip.2019.8803677
https://blog.csdn.net/lgzlgz3102/article/details/108970997
Anaconda環境安裝 (Linux)
https://ithelp.ithome.com.tw/articles/10237621
Conda 基本指令 (Linux)
https://ithelp.ithome.com.tw/articles/10237623
科展-利用深度學習將黑白影片色彩化
https://twsf.ntsec.gov.tw/activity/race-1/61/pdf/NPHSF2021-052508.pdf?0.2732005977974896
https://twsf.ntsec.gov.tw/activity/race-2/2022/pdf/TISF2022-190012.pdf
https://github.com/zeruniverse/neural-colorization
測試: https://github.com/phillipi/pix2pix
Pix2pix
paper:
https://arxiv.org/abs/1611.07004
code:
https://github.com/phillipi/pix2pix https://phillipi.github.io/pix2pix/
GAN
paper:
https://arxiv.org/abs/1803.05400
code:
https://github.com/ImagingLab/Colorizing-with-GANs
https://github.com/srihari-humbarwadi/image_colorization_gan_tf2.0
Pytorch CycleGAN and pix2pix
paper:
https://arxiv.org/abs/1703.10593
https://arxiv.org/pdf/1703.10593.pdf
code
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/colorization_model.py (Colorization model)
Pytorch GAN & pix2pix implemention
https://github.com/eriklindernoren/PyTorch-GAN
https://www.kaggle.com/code/orkatz2/pytorch-pix-2-pix-for-image-colorization/notebook
https://www.tensorflow.org/tutorials/generative/pix2pix
https://www.tensorflow.org/tutorials/generative/style_transfer
https://github.com/SachaIZADI/colorful-world-pix2pix
tensorflow pix2pix
https://github.com/affinelayer/pix2pix-tensorflow
https://affinelayer.com/pix2pix/
pix2pix 論文的小解說
https://medium.com/@falconives/day-56-pix2pix-21c7df48922c
pix2pix
https://github.com/topics/pix2pix
https://github.com/phillipi/pix2pix
https://towardsdatascience.com/colorizing-black-white-images-with-u-net-and-conditional-gan-a-tutorial-81b2df111cd8
Stable Diffusion
https://github.com/CompVis/stable-diffusion
https://ommer-lab.com/research/latent-diffusion-models/
https://arxiv.org/abs/1609.04802
如何使用 python 處理 yaml 檔案
https://medium.com/bryanyang0528/使用-python-讀取-yaml-檔案-d3f413d7dd6
Google colab 掛接雲端硬碟
https://www.wongwonggoods.com/python/python-colab-mount-google-drive/
Epoch 4/100 Iteration 400/500 loss_D_fake: 0.52868 loss_D_real: 0.58197 loss_D: 0.55533 loss_G_GAN: 1.24667 loss_G_L1: 10.98473 loss_G: 12.23140
ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data
https://arxiv.org/abs/1904.00592
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial
Network
https://arxiv.org/pdf/1609.04802.pdf
跑過 pix2pix 的模型
https://colab.research.google.com/drive/1cjMy-THaPf0-AYtFJXctB-IBdhVBAfHQ?usp=
小技巧 (下載 colab 中資料夾的方式)
https://stackoverflow.com/questions/50453428/how-do-i-download-multiple-files-or-an-entire-folder-from-google-colab
https://www.tensorflow.org/tutorials/generative/style_transfer
用 CGAN&U-net 跟自己的 datasets 訓練
https://colab.research.google.com/drive/1KzGX8X2_bf1M-z1pu0g0OXCkmcCWiQLY?usp=sharing
pix2pix training
tensorboard tutorial
https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html
用 matplotlib.pyplot 繪製折線圖
https://ithelp.ithome.com.tw/articles/10246384
多條折線
https://blog.csdn.net/daybreak___/article/details/107752519
暫時把 11 月的研究札記轉到以下連結:
https://hackmd.io/@expectlai/informatic-project-November