Comparison of deep learning methods for colorizing historical aerial imagery
https://meetingorganizer.copernicus.org/EGU22/EGU22-7686.html
ColorAI -Automatic Image Colorization using CycleGAN
https://www.researchgate.net/publication/350957456_ColorAI_-Automatic_Image_Colorization_using_CycleGAN
CycleGAN model:
https://github.com/junyanz/CycleGAN
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
Tensorflow Datasets:
https://www.tensorflow.org/datasets?hl=zh-tw
Visdom's Github
https://github.com/fossasia/visdom
CycleGan-horse2zebra
https://machinelearningmastery.com/cyclegan-tutorial-with-keras/
GANILLA:
https://github.com/giddyyupp/ganilla
https://arxiv.org/abs/2002.05638
各種 GAN 的延伸:
https://github.com/NVIDIA/pix2pixHD
https://github.com/taesungp/contrastive-unpaired-translation
https://yanwei-liu.medium.com/wandb-weights-and-biases-a-better-choice-over-tensorboard-6c75b5f972b1
pix2pix原理
https://blog.csdn.net/weixin_36474809/article/details/89004841
CycleGAN原理
https://blog.csdn.net/qq_40520596/article/details/104714762
Python 的 gdown 套件
https://clay-atlas.com/blog/2020/03/13/python-chinese-note-package-gdown-download-google-drive/
各種 GAN
https://github.com/eriklindernoren/PyTorch-GAN
2022/11/25
pix2pix model 的 instruction
Change the --dataroot and --name to your own dataset's path and model's name. Use --gpu_ids 0,1,.. to train on multiple GPUs and --batch_size to change the batch size. Add --direction BtoA if you want to train a model to transfrom from class B to A.
maptiles 的截圖
https://github.com/riatelab/maptiles/
https://github.com/AliFlux/MapTilesDownloader
Linux scp指令應用:
https://blog.gtwang.org/linux/linux-scp-command-tutorial-examples/
Kaggle pix2pix datasets
https://www.kaggle.com/datasets/vikramtiwari/pix2pix-dataset
pandas&matplotlib
https://www.learncodewithmike.com/2021/03/pandas-and-matplotlib.html
Notes on Colorization
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1161
找度量模型成效的方法:
FID score
https://github.com/mseitzer/pytorch-fid
https://blog.csdn.net/weixin_43135178/article/details/120621393
FID evaluating
pytorch_fid ./Fake ./Real
FID: 49.12806924497005
pix2pix testing options
CUT model
https://blog.csdn.net/qq_37614597/article/details/114671050
科展報告書撰寫模板
https://twsf.ntsec.gov.tw/activity/race-1/58/pdf/NPHSF2018-052511.pdf