Register for the class here!
Facilitator: Chloe
Co-Facilitators: Nedlar & BGem
Guest Lecturer: None
Date: March 13, 2024
Time: 10 AM AST (2 PM UTC)
Duration: 1 hour
Platform: NCR Thread on Telegram
Target Audience:
Learning Objective: The aim is to familiarize participants with data transformation and visualization techniques using Python and GPT-4. (The case study focuses on EasyPoll data from the Near Protocol.)
Time | Topic | Activity | Resource |
---|---|---|---|
0-5 mins | Introduction | Briefing on course outline and objectives. | ResearchWG on Telegram |
5-15 mins | Reading CSV with Pandas | Hands-on Python tutorial for reading CSV files. | Data Visualization with Python |
15-25 mins | GPT-4 for Data Analysis | Introduction to using GPT-4 for data interpretation. | GPT-4 Research Paper |
25-40 mins | Lecture from Chloe | How to think about AI x Web3 in practice | NDC Chatbot / TG channel for AI summary of NDC chats / A.I. Tarot Card Readings |
40-50 mins | Q&A | Open floor for questions. | Homework and Assignment Thread on TG |
50-55 mins | Summary and Next Steps | Summary of the session and introduction to next lesson. | Next Class - 4: Advanced Data Evaluation Method With Ai |
Python and Pandas Basics
โโโโ# Import Pandas library
โโโโimport pandas as pd
โโโโ
โโโโ# Create a simple DataFrame
โโโโdf = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'c']})
Reading CSV with Pandas
โโโโ# Reading a CSV file into a DataFrame
โโโโdf = pd.read_csv('data.csv')
โโโโ
โโโโ# Display the first 5 rows of the DataFrame
โโโโdf.head()
GPT-4 for Data Analysis
Case Study: EasyPoll
โโโโ# Read EasyPoll CSV data
โโโโdf = pd.read_csv('easypoll_data.csv')
โโโโ
โโโโ# Text analysis will be conducted using the GPT-4 UI at this stage.
โโโโ
โโโโ# Visualization (e.g., bar plot of categories)
โโโโdf['category'].value_counts().plot(kind='bar')