Try โ€‚โ€‰HackMD

NCR Course Module 2

Class 3 Lesson Plan

Data Transformation and Visualization

(Recording)

Register for the class here!

Facilitator: Chloe
Co-Facilitators: Nedlar & BGem
Guest Lecturer: None
Date: March 13, 2024
Time: 10 AM AST (2 PM UTC)
Duration: 1 hour
Platform: NCR Thread on Telegram

Target Audience:

  • Enthusiasts keen on enhancing blockchain data skills.
  • Researchers in blockchain applications.
  • Data analysts seeking blockchain insights.
  • Computer science students and academics.
  • NEAR community members seeking technical knowledge.

Learning Objective: The aim is to familiarize participants with data transformation and visualization techniques using Python and GPT-4. (The case study focuses on EasyPoll data from the Near Protocol.)

Pre-Reading Material

Agenda

Time Topic Activity Resource
0-5 mins Introduction Briefing on course outline and objectives. ResearchWG on Telegram
5-15 mins Reading CSV with Pandas Hands-on Python tutorial for reading CSV files. Data Visualization with Python
15-25 mins GPT-4 for Data Analysis Introduction to using GPT-4 for data interpretation. GPT-4 Research Paper
25-40 mins Lecture from Chloe How to think about AI x Web3 in practice NDC Chatbot / TG channel for AI summary of NDC chats / A.I. Tarot Card Readings
40-50 mins Q&A Open floor for questions. Homework and Assignment Thread on TG
50-55 mins Summary and Next Steps Summary of the session and introduction to next lesson. Next Class - 4: Advanced Data Evaluation Method With Ai

Activities Details

  1. Python and Pandas Basics

    • Brief overview of Python and Pandas for data manipulation.
    โ€‹โ€‹โ€‹โ€‹# Import Pandas library
    โ€‹โ€‹โ€‹โ€‹import pandas as pd
    โ€‹โ€‹โ€‹โ€‹
    โ€‹โ€‹โ€‹โ€‹# Create a simple DataFrame
    โ€‹โ€‹โ€‹โ€‹df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'c']})
    
  2. Reading CSV with Pandas

    • Step-by-step guidance on loading a CSV file into a Pandas DataFrame.
    โ€‹โ€‹โ€‹โ€‹# Reading a CSV file into a DataFrame
    โ€‹โ€‹โ€‹โ€‹df = pd.read_csv('data.csv')
    โ€‹โ€‹โ€‹โ€‹
    โ€‹โ€‹โ€‹โ€‹# Display the first 5 rows of the DataFrame
    โ€‹โ€‹โ€‹โ€‹df.head()
    
  3. GPT-4 for Data Analysis

    • Exploration of GPT-4's data analysis capabilities. Discuss its utility in data interpretation.
  4. Case Study: EasyPoll

    • Practical application focusing on processing and analyzing CSV files from EasyPoll.
    โ€‹โ€‹โ€‹โ€‹# Read EasyPoll CSV data
    โ€‹โ€‹โ€‹โ€‹df = pd.read_csv('easypoll_data.csv')
    โ€‹โ€‹โ€‹โ€‹
    โ€‹โ€‹โ€‹โ€‹# Text analysis will be conducted using the GPT-4 UI at this stage.
    โ€‹โ€‹โ€‹โ€‹
    โ€‹โ€‹โ€‹โ€‹# Visualization (e.g., bar plot of categories)
    โ€‹โ€‹โ€‹โ€‹df['category'].value_counts().plot(kind='bar')