# 2 + 4 solutions ## Problem statement Find all possible solutions to the equation: $$x^6 - x^3 = 2.$$ ## Solution Rewrite the equation as follows: $(x^3)^2 - x^3 - 2 = 0$. - Case 1: $x^3 = 1$. $\Leftrightarrow (x - 1)(x^2 + x + 1) = 0$ $\Rightarrow x = 1$ or $x^2 + x + 1 = 0$. Let $\Delta = 1^2 - 4 \cdot 1 \cdot 1 = -3 \Rightarrow \sqrt{\Delta} = \sqrt{3}i$. $x = \frac{-1 \pm \sqrt{3}i}{2} = \frac{-1}{2} \pm \frac{\sqrt{3}}{2}i$. - Case 2: $x^3 = 2$. $\Leftrightarrow (x - \sqrt[3]{2})(x^2 + \sqrt[3]{2}x + \sqrt[3]{2}^2) = 0$ $\Rightarrow x = \sqrt[3]{2}$ or $x^2 + \sqrt[3]{2}x + \sqrt[3]{2}^2 = 0$. Let $\Delta = \sqrt[3]{2}^2 - 4 \cdot 1 \cdot \sqrt[3]{2}^2 = -3\sqrt[3]{2}^2 \Rightarrow \sqrt{\Delta} = \sqrt[3]{2}\sqrt{3}i$. Therefore, $x = \frac{-\sqrt[3]{2} \pm \sqrt[3]{2}\sqrt{3}i}{2} = \frac{-\sqrt[3]{2}}{2} \pm \frac{\sqrt{3}}{\sqrt[3]{4}}i$. Finally, the set of possible solutions to the given equation can be represented below: $$S = \{-1, \sqrt[3]{2}, \frac{-1}{2} \pm \frac{\sqrt{3}}{2}i, \frac{-\sqrt[3]{2}}{2} \pm \frac{\sqrt{3}}{\sqrt[3]{4}}i\}.$$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up