# CJSHS AI Course Week 1 ## 課程學期目標(社團發表) 1. 製作 CJSHS GPT 2. 製作自走車 ## 課程須知 - 上課時間: 10:00~11:00 - 動手動腦完成作業時間: 11:00~12:00 - 老師要去開會 - 作業完成找社長、副社長或老師檢查 - 完成作業後,自行利用時間 (可以玩電腦,不能玩手機) - 不能使用手機 * 校方告知學生一律不能使用手機 ## Week 1 課程 ### Classification (分類任務) ### 開啟 Colab - https://colab.research.google.com/ - 設定使用GPU運算 1. 執行階段 2. 變更執行階段類型 3. 選擇 "T4 GPU" 4. 儲存 ### Classification (分類任務) - 匯入程式庫 ```python= # TensorFlow and tf.keras import tensorflow as tf # Helper libraries import numpy as np import matplotlib.pyplot as plt print(tf.__version__) ``` - 下載資料集 (fashion MNIST) 資料集網頁: https://www.tensorflow.org/api_docs/python/tf/keras/datasets/fashion_mnist/load_data ```python= fashion_mnist = tf.keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() ``` - 設定類別名稱 ```python= class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ``` - 資料標準化 ```python= train_images = train_images / 255.0 test_images = test_images / 255.0 ``` - 資料範例可視化 ```python= plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() ``` - 建立AI模型 ```python= model = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10) ]) ``` - 編譯AI模型 ```python= model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) ``` - 定義繪圖函式及處理預測結果 ```python= def plot_image(i, predictions_array, true_label, img): true_label, img = true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): true_label = true_label[i] plt.grid(False) plt.xticks(range(10)) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') ``` - 訓練前模型之預測 ```python= probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax()]) predictions = probability_model.predict(test_images) ``` - 繪製預測 ```python= num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions[i], test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions[i], test_labels) plt.tight_layout() plt.show() ``` - 訓練模型 ```python= model.fit(train_images, train_labels, epochs=10) ``` - 訓練後模型之預測 ```python= probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax()]) predictions = probability_model.predict(test_images) ``` - 繪製預測 ```python= num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions[i], test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions[i], test_labels) plt.tight_layout() plt.show() ``` ## 作業 1. 成功執行以上程式碼。 2. 成功訓練模型。 3. 繪製預測結果。 ### Bonus - 使用另一個資料集來進行訓練並預測繪製結果 - hint: - MNIST: https://www.tensorflow.org/api_docs/python/tf/keras/datasets/mnist/load_data - CIFAR10: https://www.tensorflow.org/api_docs/python/tf/keras/datasets/cifar10/load_data